Math 229: Combinations of Functions (Supplement for Chapter 8)
General Sine Function (with no phase shift) $y=A \sin (B x)+D$

Describe how each of the following constants affects the parent graph of $y=\sin x$

What does A control?

What does B control?

What does D control?

Variable Amplitude:

Normally A is a constant.
Review! Make a quick sketch of two periods (positive \mathbf{x} values) of $y=2 \sin (x)$
Be sure to dash in an "Amplitude Envelope" at $\mathrm{y}=2$ and $\mathrm{y}=-2$.

What happens if A is not constant, i.e., $A=A(x)$?

Example: $y=x \sin (x)$
What is "A" for this function?
Predict what effect this new kind of "A" (variable) will have on the graph:

By hand, sketch $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}$ as an "Amplitude Envelope" and fill in the sine graph. Remember that the amplitude doesn't affect the zeros (midline points), so these will be the same as for a regular sine graph.

Now graph $y=x \sin (x)$ using Desmos and see if your prediction was correct. Add the graphs of $\mathrm{y}=\mathrm{x}$ and $\mathrm{y}=-\mathrm{x}$ in your Desmos graph.

Note: The new function $y=x \sin (x)$ is NOT periodic since it doesn't return to the same values of y as it cycles through its oscillations.

However, it has a distinct pattern that is important in real applications! Specifically...

Damped Oscillations: In the real world, will a spring keep bouncing up and down forever as time goes on? \qquad
If not, what would the graph of the position of a weight on the end of bouncing spring look like, over time? Sketch a graph next to the picture of the weight, showing its displacement as a function of time.

Compressed spring

Equilibrium: \qquad

Dash in the amplitude envelope on your graph above.
What function from your past life in algebra describes the "envelope" for the amplitude? \qquad

This behavior can be modeled using an exponential decay function as the amplitude envelope:
Here is one such decay function: $y=5 e^{-.1 x}$
So our modified sine function would be written as

$$
f(x)=5 e^{-.1 x} \sin (x)
$$

Carrier Waves: Another wave form can be the "envelope" for a oscillations! These is how music on the radio is "carried", by a sinusoidal "envelope" called a "carrier wave". This signal can be filtered out, then voila! You have just the actual waves that translate into music or talk or whatnot.

Variable "Midline" and Combined Waveforms: Normally D is a constant.
By hand, do a quick sketch of two periods (positive \mathbf{x} values) of $y=\sin (x)+2$ then dash in the Midline.

What if D is a variable?

Example: $y=\sin (x)+x$
What is "D" for this function?
Predict what effect this new kind of "D" (variable) will have on the graph:

By hand, sketch $\mathrm{y}=\mathrm{x}$ and predict how the sine curve will "ride" on this new "Midline"

Now graph using Desmos and see if your prediction was correct. Add the graphs of $\mathrm{y}=\mathrm{x}$ in your Desmos graph.

Note: The new function $y=x \sin (x)$ is NOT periodic since it doesn't return to the same values of y as it cycles through its oscillations. However, it has a distinct pattern that is important in real applications! Specifically...

Combined Wave Forms

Musical Note
Note the graph of the sound waves created by plucking a guitar string. Note that there is a larger oscillation with smaller oscillations "riding" the larger one.

How might we model the larger wave and the smaller "rider" waves.

Supplemental problems:

1. Damped Oscillations. Consider the function

$$
y=5 e^{-.1 x} \sin (x)
$$

(a) What part of the function will control the amplitude of the sine function oscillations?
(b) Use Desmos to graph $y=5 e^{-.1 x}$ from $\mathrm{x}=0$ to 6 pi and $\mathrm{y}=-6$ to 6 . Copy this graph on your paper.
(c) Reflect the graph across the x -axis to create the "envelope". (You can also graph $y=-5 e^{-.1 x}$ to see this reflection on Desmos.)
(d) Fill in sine wave oscillations on the graph within the "envelope". The zeros are the same as for $\mathrm{y}=\sin (\mathrm{x})$
(e) Check your work by graphing $y=5 e^{-.1 x} \sin (x)$ on Desmos.
(f) Did the zeros of the sine function change? Why or why not?
2. Carrier Waves. Consider the function $y=10 \cos (.1 x) \sin (2 x)$
(a) Which function has the longer period (so lower frequency) $\cos (.1 x)$ or $\sin (2 x)$?
(b) Graph $y=10 \cos (.1 x)$ on Desmos from $\mathrm{x}=-5$ pi to 25 pi, and sketch the graph on your paper. Next, reflect the graph across the x-axis to make an "envelope". (You can also graph $y=-10 \cos (.1 x)$ on Desmos to see this reflection.)
(c) Fill in the higher frequency (shorter period) sine waves in this envelope. You don't have to be super precise with this, just fill in a rough impression of how the sine waves would oscillate inside this envelope.
(d) Check your work by graphing $y=10 \cos (.1 x) \sin (2 x)$ on Desmos.
3. Addition of functions. Consider the function $y=\sin (x)+\frac{1}{2} x$
(a) Graph $y=\frac{1}{2} x$ by hand from $\mathrm{x}=-10$ to 10
(b) Graph a sine wave "riding" on this graph.
(c) Check your work by graphing $y=\sin (x)+\frac{1}{2} x$ on Desmos.
(d) What are the x -values where the oscillations intersect the line?
4. Combined waves: Consider

$$
y=10 \cos (.1 x)+\sin (2 x)
$$

(a) Which wave will be the base and which will be the "rider".
(b) Use Desmos to graph the following function from $\mathrm{x}=0$ to 25 pi then sketch it on your paper: $y=10 \cos (.1 x)$
(c) Now add the smaller amplitude, higher frequency waves given by $y=\sin (2 x)$
(d) Check the resulting graph from (c) by graphing $y=10 \cos (.1 x)+\sin (2 x)$ on Desmos.
(e) How would this translate into sounds you hear?
5. Interference:
(a) Graph $y=\sin (x)$ and $y=\sin (x-\pi)$ by hand on the same axes.
(b) What do you expect $y=\sin (x)+\sin (x-\pi)$ to look like?
(c) Check your guess by graphing with Desmos.

