Math 229: Homework Supplement for Section 8.2 (Modeling with Sinusoidal Functions)

1. A weight attached to the end of a long spring that is bouncing up and down next to a table. As it bounces, its distance above and below the table varies sinusoidally. Assume the table top is level with the midline of the bouncing weight.

The weight is 3 inches above the table top at its highest point and 3 inches below the table top at its lowest point. Assume the weight is at its highest point at $\mathrm{t}=0$ seconds and its lowest point at $\mathrm{t}=2$ seconds.
(a) Sketch a sinusoidal graph next to the picture of the weight, showing its position relative to the table top as a function of time.
(b) Find the amplitude, period, and midline of this function.
(c) Write a cosine function to model the position of the weight relative to the table top.
(d) Where is the weight 3 seconds after it starts bouncing?
(e) At what times will the weight be at the same height at the table top? Relate this to the graph.

Table Top

2. A population of animals varies sinusoidally between a low of 700 on January 1 and a high of 900 on July 1.
a. Graph the population against time.
b. Find a formula for the population as a function of time, t, measured in months since the start of the year.
c. According to your formula, what is the population on March 15 ?
3. Outside temperature over a day can be modeled as a sinusoidal function. Suppose you know that the high temperature for the day is 92 degrees F and the low temperature of 78 degrees occurs at 4 am . Assuming t is the number of hours since midnight, find an equation for the temperature, D, in terms of t.
4. Sunspot Problem: For several hundred years, astronomers have kept track of the number of solar flares, or "sunspots", which occur on the surface of the sun. The number of sunspots counted in a given year varies periodically from a minimum of about 10 per year to a maximum of about 110 per year. Between the maximums that occurred in the years 1750 and 1948 , there were 18 complete cycles.
a. What is the period of the sunspot cycle?
b. Assume that the number of sunspots counted in a year varies sinusoidally with the year. Sketch a graph of two sunspot cycles, starting in 1948, thus let 1948 correspond to $\mathrm{t}=0$.
c. Write an equation expressing the number of sunspots per year in terms of the year
d. How many sunspots would you expect in the year 2020?

