Math 229: Graphs of Common Polar Equations Summary

Lines in Polar Coordinates:

Lines through the Origin:
Rectangular: $y=m x$
Polar: $\theta=\theta_{0}, m=\tan \left(\theta_{O}\right)$

Vertical Lines

Rectangular: $x=a$
Polar: $r=a \sec (\theta)$

Horizontal Lines
Rectangular: $y=b$
Polar: $r=a \csc (\theta)$

Circles in Polar Coordinates:

Circle Centered at the origin: $\quad r=a$

$$
r=a \cos \theta
$$

Symmetric w/ respect to x-axis.

$r=a \sin \theta$
Symmetric $w /$ respect to \mathbf{y}-axis.

$$
r=a+b \cos \theta
$$

Symmetric w/ respect to \mathbf{x}-axis.

$$
r=a+b \sin \theta
$$

Symmetric w/ respect to \mathbf{y}-axis.

To determine shape:

If $|a|=|b|$, creates a heart-shaped cardiod. These have a "cusp".

If $|a|<|b|$, creates an inner loop:

If $|a|>|b|$, creates no cusp nor inner loop. It looks like a slightly squashed circle.

$r=3+\cos \theta$

$r=-4+2 \sin \theta$

$r=-5-3 \sin \theta$

Rose Curves: $\quad \boldsymbol{a}$ is the "height" (or length) of each petal.
$r=a \cos (n \theta)$
One petal is symmetric to x -axis, if n is even then symmetric to both axes.
**If n is odd, there will be \mathbf{n} petals. Some examples:

$$
r=a \sin (n \theta)
$$

May be symmetric to y-axis.

If n is even, there will be $\mathbf{2 n}$ petals.

Lemniscates: ("Figure Eights") \boldsymbol{a} is the length of one loop. (One half of the figure eight.)

$$
r^{2}=a^{2} \cos (2 \theta)
$$

Symmetry $\mathrm{w} /$ respect to x -axis, y -axis, and origin.

$r^{2}=4 \cos (2 \theta)$

$$
r^{2}=a^{2} \sin (2 \theta)
$$

Symmetry w/ respect to origin only.

$r^{2}=9 \sin (2 \theta)$

