Bring your scientific calculator to the exam. (Graphing calculators are not allowed on the test.)

Suggested Review for Test 1

Read and study:
Study Chapter 7 Review, pages 633-636

Do:
Practice Test, page 639: 1-23 all
Even Answers on last page of review sheet.

General

- Know the difference between an exact value and an approximation (e.g., $\sqrt{2}$ is EXACT, whereas 1.4142 is an approximation of $\sqrt{2}$)

Concepts to study:

Note: For all of these concepts, you should be able to sketch a graph or diagram according to the description. Many of the problems on the test will require a sketch as part of the answer. (to receive full credit on the problem)

Angles (Section 7.1)

- Identify the initial side and terminal side of an angle.
- Graph angles on the xy-coordinate system. This means you should know...
o Standard position of an angle
o Positive vs. negative angles
- Find one or more Coterminal Angles for a given angle in standard position.
- Convert angles from degrees to radians and vice versa.
- Know (memorize!) the degree measurement of specific radian angles

Know what the following angles are in degrees, without having to convert:

$$
0, \frac{\pi}{2}, \pi, \frac{3 \pi}{2}, 2 \pi \quad \frac{\pi}{3}, \frac{\pi}{4}, \frac{\pi}{6}
$$

Applications

- Linear and Angular Speed
- Arclength (remember that the angle MUST be in radians!)
- Area of a Sector (remember that the angle MUST be in radians!)

Triangles (Section 7.2)

- Memorize the sides of the basic 30-60-90 triangles
- Memorize the sides of the basic 45-45-90 triangle

Trig Definitions, Right Triangle (Section 7.2)

- Know the definition of each of the six trigonometric functions, in terms of a right triangle.
SOH-CAH-TOA is a good mnemonic to remember the first three.
- Know the Reciprocal Identities for secant, cosecant, and cotangent
- Evaluate (find the value of) any of the six trig functions for a given right angle. You might have to use the Pythagorean Theorem to find a missing side.

- Use your calculator to evaluate any of the six trig functions for a given angle.
o You can find $\sin \theta, \cos \theta$, and $\tan \theta$ directly on the calculator.
o You will have to use the Reciprocal Identities to find $\csc \theta, \sec \theta$, and $\cot \theta$ when using a calculator.
- Identities to memorize!

$$
\begin{array}{|l|l}
\hline \text { Reciprocal Identities } & \text { Ratio Identities } \\
\sec x=\frac{1}{\cos x} \quad \csc x=\frac{1}{\sin x} \quad \cot x=\frac{1}{\tan x} \quad \tan x=\frac{\sin x}{\cos x} \quad \cot x=\frac{\cos x}{\sin x}
\end{array}
$$

Applications

- Find all missing sides of a given triangle.
o Apply Right Triangle Trig Definitions (Ratios)
o Apply the Pythagorean Theorem
- Identify and/or Sketch the Angle of Elevation and/or Angle of Depression. Solve problems based on these.

The xy-coordinate Trig Definitions and the Unit Circle Definitions (Sections 7.3 and 7.4)

Coordinate Definitions:

- Know the xy-Coordinate Definition of all 6 trig functions
$\begin{array}{ll}\sin \theta=\frac{y}{r} & \csc \theta=\frac{r}{y} \\ \cos \theta=\frac{x}{r} & \sec \theta=\frac{r}{x} \\ \tan \theta=\frac{y}{x} & \cot \theta=\frac{x}{y}\end{array}$

- Know the signs of all 6 trig functions in each of the 4 quadrants.
"All Students Take Calculus"

Sine signs

Cosine signs

Tangent and
Cotangent signs

- Use Reference Angles to evaluate Trig Functions for any angle.

Find the Reference Angle of a given angle.
Remember the Bow Tie for the reference angles!

Unit Circle Definitions:

- Know the Unit Circle Definition for sine and cosine (see below)
- Given a Unit Circle with points labeled on it, be able too find trig function values by identifying the x-value with $\cos (t)$ or the y-value with $\sin (t)$.

General Circular Functions: Consider a point (x, y) on a circle of radius r, centered at the origin.

$$
\text { We know } \frac{x}{r}=\cos \theta \quad \text { so } \quad x=r \cos \theta
$$

$$
\text { And } \quad \frac{y}{r}=\sin \theta \quad \text { so } \quad y=r \sin \theta
$$

(We'll revisit this in Chapter 10!)

Unit Circle Trig Definitions: If $\mathrm{r}=1$, the Circular Function definitions become:

$$
x=\cos \theta \quad y=\sin \theta
$$

The other 4 Trig Functions follow along. Again, these are consistent with the Right Triangle and the Coordinate System Definitions.
$\tan \theta=\frac{y}{x}=\frac{\sin \theta}{\cos \theta} \quad \cot \theta=\frac{x}{y}=\frac{\cos \theta}{\sin \theta}$
$\sec \theta=\frac{1}{x}=\frac{1}{\cos \theta}$
$\csc \theta=\frac{1}{y}=\frac{1}{\sin \theta}$

Chapter 7 Practice Test Answers

\#2: $-620^{\circ}=-\frac{31 \pi}{9}$
\#4: $125.664 \mathrm{ft}^{2}$
\#6: $\frac{10 \pi}{7}$
\#8: Draw the angle $-\frac{\pi}{6}$ in standard position on the Cartesian plane.
\#10: $a=3 \sqrt{7}, b=9$

\#12: Height $=316.8 \mathrm{ft}$
$\# 14 \sin 240^{\circ}=-\frac{\sqrt{3}}{2}$
\#16: State the range of the sine and cosine functions. Range $=[-1,1]$
\#18: $\tan \frac{\pi}{3}=\sqrt{3}$
\#20: $\tan 210^{\circ}=\frac{1}{\sqrt{3}}$
\#22: If $\cos t=\frac{\sqrt{3}}{2}$, then $\cos (t-2 \pi)=\frac{\sqrt{3}}{2}$

