Math 229: Review for Test 4

(Spring 2019)
Bring your scientific calculator to the exam. (Graphing calculators are not allowed on the test.)
Suggested Review Problems: Most of the test will have problems similar to the review exercises so I STRONGLY encourage you to thoughtfully do these problems. Try to do these problems without looking at your notes and without looking at the answers in the back of the text; i.e., treat the problems as a practice exam.

If, for any of the problems, you have to look at notes or reverse engineer the solution from the answer, then you need to go back and practice more of that type of problem!

Chapter 10 Review, page 870: 3, 5, 7, 11, 13, 16, 17, 18, 19, 20, 21, 22, 27, 54, 55, 56, 57, 58, 60, 62, 63

Page 873: \#3

Whenever possible, include a sketch to illustrate the problem and/or solution.
Even Answers: \#16: $\quad r=\frac{-2}{\cos \theta} \quad$ \#18: $r=-2 \sin \theta$
\#20: $4 x+y=-2 \quad$ \#22: $\mathrm{x}=5$ (vertical line through 5 on the x -axis)

Section 10.1: Law of Sines (formula will be provided but you should memorize it anyway)
Use when you have a matched angle with an opposite-side.

Section 10.2: Law of Cosines (formula will be provided but you should memorize it anyway)
Use when you have SSS or SAS.

Section 10.3: Polar Coordinates.
Memorize the conversion formulas from Rectangular to Polar Form, and vice versa.
Plot polar coordinates
Be able to convert from Rectangular and Polar and vice versa.

Section 10.4: Graphs of Polar Functions and Equations
No memorization is required but you will need to use a general summary of polar equations and their graphs to graph a specific equation. You will need to include a table of (r, theta) values in your graphing work.

Section 10.8: Vectors

- Graph a vector in standard form.
- Distinguish between a vector and a scalar quantity
- Find vector components, given a magnitude and direction.
- Find the magnitude and direction of a vector, using its vector components.
- Add, subtract and find scalar muttiples of vectors. Be able to do this graphically or using components.
- Apply vectors in solving problems involving displacement, velocity, and force.

