# Math 229: The Unit Circle and Basic Cosine, Sine Graphs (Section 8.1)

# **Sinusoidal Curves**

## **Basic (Parent) Sine Graph:**

Use the unit circle to graph y = sin(t) on the (t,y) coordinate system. Make sure t is in radians!







Note that sin(-t) = -sin(t)

This means sine is an ODD function: f(-x) = -f(x)

What type of symmetry to ODD functions have?



### **Basic (Parent) Cosine Graph:**

Make a table using the unit circle to graph x = cos(t) on the (t,x) coordinate system. Make sure t is in radians!



Table:

Note that  $\cos(-t) = \cos(t)$ 

This means cosine is an EVEN function f(-x) = f(x)

What type of symmetry do EVEN functions have?



#### **Amplitude and Period**

#### **Amplitude and Reflection**

What if the radius of the original circle was larger? What effect would that have on the sine or cosine graph? Graph y = sin(x) and y = 3sin(x) using technology: What effect did the 3 have on the Basic Graph?

Use this observation to graph one period of  $y = 2\sin(x)$  and  $y = 5\cos(x)$  by hand. Check on Desmos.

Graph  $y = \cos(x)$  and  $y = -\cos(x)$  using technology. What effect did the negative have on the graph?

Use this observation to graph one period  $y = -\sin(x)$  by hand. Check on Desmos.

#### **Period and Quarter Points**

Graph y = sin(x) and y = sin(2x) using technology. What effect did the 2 have on the Basic Graph?

Graph y = cos(x) and  $y = cos(\frac{1}{2}x)$  using technology. What effect did  $\frac{1}{2}$  have on the Basic Graph?

**Summary**: The graph of 
$$y = \sin(Bx)$$
 or  $y = \cos(Bx)$  will have period,  $T = \frac{2\pi}{B}$ 

If B > 1, then the period will be shorter (faster cycles)

If 0 < B < 1, then the period will be longer (slower cycles)

Predict: Will  $y = \sin(\frac{1}{4}x)$  cycle faster or slower than  $y = \sin(\frac{1}{2}x)$ ?

Find the period and graph each function on the same grid by hand.

### Vertical Shift and Horizontal (Phase) Shift

### Vertical Shift and Midline

Graph y = cos(x) and y = cos(x) + 3 using technology: What effect did the 3 have on the Basic Graph? Describe the change relative to the position of the **midline** and where the zeros went.



### Horizontal (Phase) Shift

•

Graph  $y = \sin(x)$  and  $y = \sin(x - \frac{\pi}{4})$  using technology.

What effect did  $\frac{\pi}{4}$  have on the graph?



**Important!** In practice, modeling of periodic phenomena is almost always done using a sine function (not the cosine function).

Graph  $y = \cos(x)$  and  $y = \sin(x + \frac{\pi}{2})$  using technology. What do you notice

Any cosine function can be transformed into a sine function.

How? \_\_\_\_\_

Transform  $y = 2\cos(3x) + 7$  into a sine function by using a Phase Shift

Answer: \_\_\_\_\_

Steps to Graph a Cosine or Sine Function  $y = A\cos(B(x - x_0)) + D$  or  $y = A\sin(B(x - x_0)) + D$ 

- 1. Sketch the **Basic Graph** (sine or cosine) for reference
- 2. Vertical Shift: The midline is y = D. Dash it in on the graph.
- 3. **Amplitude:** Amplitude = |A|. Find the amplitude of the function, and dash in the "envelope" above and below the midline.
- 4. **Phase Shift** =  $x_0$  : The starting x-value will be x = 0 unless there has been a phase shift. If so, the phase shift,
  - $x_0$ , will be the starting x-value. Plot this point.
    - Sine graphs begin at the Midline
    - Cosine graphs begin at the Peak
- 5. **Period, Quarter Points:**  $T = \frac{2\pi}{B}$  Find the period, T, then divide the period by 4 to get the increment. Use

the increment to plot the quarter points from the starting x-value. Fill in the midline points, max, and min values now. Extend the pattern for the second period.

6. **Reflection:** If A < 0 (negative), then there is a vertical reflection. Reflect the max and min across the midline if there is a reflection.

### Connect the points in a smooth, sinusoidal curve!

**Example**: Graph two periods of each of the following by hand, then check your work using Desmos:

 $y = 4\sin(\frac{1}{2}x)$ 

 $y = 3\sin(x) + 5$ 

 $y = \cos(\pi(x-1))$ 

 $y = -2\cos(x)$ 

 $y = \cos(\frac{\pi}{3}x) + 4$