Math 229: Test 2 (Wright, Fall 2018) (100 points)

Name:___

Please do your work in a well-organized manner. Credit is based on the amount of <u>correct</u> work shown, not just on the final answer. Give exact answers where asked for and use proper notation. Only <u>scientific calculators</u> are allowed on the exam.

1. (16 points) Sketch two full periods (one on the right and one on the left of the y-axis) of each of the following functions. For full credit, the x-axis and y-axis must be labeled with all relevant values (quarter points, midline, max/min values)

(a) $y = 2\sin x + 3$

	у /	
Amplitude:		
Period:		
Midline:		
Domain:		× x
Range:		

(b) $y = -3\cos\left(\frac{\pi}{3}x\right)$

	У ↑	
Amplitude:		
Period:		
Midline:		
Domain:		
Range:		

2. (4 pts) Fix the formatting In the functions $y = A\sin(B(x - x_0)) + D$ or $y = A\cos(B(x - x_0)) + D$

(circle the correct answer for each)

(a) The period is B	the period is A	the period is $\frac{2\pi}{B}$	the period is D
(b) The amplitude is D	the amplitude is A	the amplitude is B	the amplitude is $ A $
(c) The midline is y = D	the midline is $y = A$	the midline is $y = x_0$	the midline is y = B
(d) The phase shift is A	the phase shift is x_0	the phase shift is D	the phase shift is B

- 3. (6 pts) (a) Find <u>all</u> x-values that make sine zero; i.e., solve sin(x) = 0.
 - (b) Find <u>all</u> x-values that make cosine zero; i.e., solve cos(x) = 0.

4. (3 pts) Vertical asymptotes are created by _____

5. (12 pts) (a) Rewrite $y = \tan x$ using the Ratio Identity (i.e., in terms of sine and cosine).

 $y = \tan x =$

(b) For what x-values will the graph of $y = \tan x$ have a Vertical Asymptote? Give **all** possible values.

	y 1	\uparrow
(c) Graph 2 periods of $y = \tan x$. What is the period of this function?		
For full credit, the x-axis must be labeled with all relevant values (asymptotes).		x
What is the domain of $y = \tan x$?		
Domain:		
What is the range of $y = \tan x$?		

Range:		
6. (8 pts) Fill in the number of the graph that <u>matches</u>	(i)	
each equation:		5
A.) $y = 2\sin x$		
		-2π 0 2π
B) $y = \sin(2x)$		
$C \rightarrow r = sin(r) + 2$		1 I
C.) $y = \sin(x) + 2$	(ii)	
		5
\mathbf{D} $(\alpha + 2)$		
D.) $y = \sin(x+2)$		
		-5
	(iii)	
	()	5
		- <u>2</u> π 9 2π
		-5-
	(1V)	

7. (8 points) Graph $y = \frac{1}{2}\sec(x)$ from $x = -2\pi$ to $x = 2\pi$. Clearly label the axes with key values.

	v 🛧
	x
Deriod	
renou.	

Domain:

Range:

8. (4 points) Determine the phase (horizontal) shift of the given function $y = \sin(\pi x - 3\pi)$. You do not have to graph!

9. (6 pts) Determine the equation of the function shown in the graph.

Get a better graph, apparent negatives on the y-axis.

10. (8 pts) A weight attached to the end of a long spring that is bouncing up and down next to a table. As it bounces, its distance above and below the table varies sinusoidally. Assume the table top is level with the midline of the bouncing weight.

The weight is 4 inches above the table top at its highest point and 4 inches below the table top at its lowest point. Assume the weight is at its highest point at t = 0 seconds and its lowest point at t = 1.5 seconds.

(a) Sketch a sinusoidal graph <u>next to the picture</u> of the weight, showing its position relative to the table top as a function of time.

(b) Write a cosine function to model the position of the weight <u>relative to the table top</u>.

11. (8 pts) Evaluate without using a calculator. For credit, you must sketch a right triangle. Write your answer in radians.

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) =$$
 _____ (b) $\arctan\left(\frac{1}{\sqrt{3}}\right) =$ _____

12. (4 pts) Explain why it isn't possible to find $\sin^{-1}\left(\frac{3}{2}\right)$. Include the sketch of a right triangle in your explanation

13. (6 pts) The grade of a road is 7%. This means for every horizontal distance of 100 feet on the road, the vertical rise is 7 feet. Find the angle the road makes with the horizontal in both radians and degrees.

Sketch:

Angle (radians): _____ Angle (degrees): _____

14. (3 pts) Rewrite the following without -x in the argument:

 $\sin(-x)\tan(-x)+\cos(-x)$

15. (6 pts)

(a) Use the fact the cosine is an even function to prove secant is an even function; i.e., show that

$$\sec(-x) = \sec(x)$$

(b) Because $y = \sec(x)$ is an even function, we know its graph will have what type of symmetry?

Symmetry with respect to ______