Please do your work in a well-organized manner. Credit is based on the amount of <u>correct</u> work shown, not just on the final answer. Give exact answers where asked for and use proper notation. Only <u>scientific calculators</u> are allowed on the exam.

1. (16 points) Sketch two full periods (one on the right and one on the left of the y-axis) of each of the following functions. For full credit, the x-axis and y-axis must be labeled with all relevant values (quarter points, midline, max/min values)

or each graph.

(a) $y = 2\sin x + 3$ Amp B = 1(so usual period of 2π

Amplitude:

Period: T=2TT

Midline: 4=3

Domain: $(-\infty, \infty)$

Range: [1,5]

some interpreted as restricted domain -ok

3 (b) $y = -3\cos(\frac{\pi}{3}x)$ $B = \frac{11}{3}$ $A = \frac{1}{3}$

Amplitude: $\left|-3\right| = 3$

Period: T=6

Midline: 4 = 6

Domain: $(-\infty, \infty)$

Range: $\begin{bmatrix} -3 & 3 \end{bmatrix}$

- 2. (4 pts) In the functions $y = A\sin(B(x-x_0)) + D$ (circle the correct answer)
 - (a) The period is B

the period is A

the period is $\frac{2\pi}{R}$

 $y = A\cos(B(x-x_0)) + D$

the period is D

(b) The amplitude is D

the amplitude is A

the amplitude is B

the amplitude is |A|

(c) The midline is
$$y = D$$

the midline is y = A

the midline is $y = x_0$

the midline is y = B

the phase shift is x_0

the phase shift is D

the phase shift is B

3. (6 pts) (a) Find <u>all</u> x-values that make sine zero; i.e., solve sin(x) = 0.

- (b) Find <u>all</u> x-values that make cosine zero; i.e., solve cos(x) = 0.

- (3 pts) Vertical asymptotes are created by <u>division</u> by <u>Zero</u>
- 5. (12 pts) (a) Rewrite $y = \tan x$ using the Ratio Identity (i.e., in terms of sine and cosine).

$$y = \tan x = \frac{\sin(x)}{\cos(x)}$$

2 (b) For what x-values will the graph of $y = \tan x$ have a Vertical Asymptote? Give all possible values.

See # 3b!

$$X = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$$

 $-\frac{\pi}{2}, -\frac{3\pi}{2}, \dots$

 $\mathcal{L}(c)$ Graph 2 periods of $y = \tan x$. What is the period of this function?

What is the range of $y = \tan x$?

Range: $\left(-\infty,\infty\right)$

6.	(8 pts) Fill in the	number	of the	graph	that	matches
eac	ch equation:		1			

- A.) $y = 2\sin x$ ampB.) $y = \sin(2x)$ $B = 2 \quad \text{So} \quad T = \frac{2\pi}{2} = T$

- C.) $y = \sin(x) + 2$ midline

 D.) $y = \sin(x+2)$ phase shift, left 2

(8 points) Graph $y = \frac{1}{2}\sec(x)$ from $x = -2\pi$ to $x = 2\pi$. Clearly label the axes with key values.

2 Period: 2π Domain: $2\times 1\times 4$ 2×1

- 1 Range: $\left(-\infty, -\frac{1}{2}\right) \cup \left[\frac{1}{2}, \infty\right)$
 - (4 points) Determine the phase (horizontal) shift of the given function $y = \sin(\pi x 3\pi)$. You do not have to graph!

9. (6 pts) Determine the equation of the function shown in the graph.

T=ATT no phase shift if we use cosine! Midline: y=3 Amp=2

 $y=2\cos\left(\frac{1}{2}x\right)+3$

10. (8 pts) A weight attached to the end of a long spring that is bouncing up and down next to a table. As it bounces, its distance above and below the table varies sinusoidally. Assume the table top is level with the midline of the bouncing weight.

The weight is 4 inches above the table top at its highest point and 4 inches below the table top at its lowest point. Assume the weight is at its highest point at t = 0 seconds and its lowest point at t = 1.5 seconds.

(a) Sketch a sinusoidal graph next to the picture of the weight, showing its position relative to the table top as a

(b) Write a cosine function to model the position of the weight relative to the table top

(b) Write a cosine function to model the position of the weight relative to the table top.

$$T = 3 \text{ Aecs}$$

$$B = 2\pi = 2\pi$$

$$T = 3$$

$$A = 4 \text{ inches}$$

$$V = 4 \cos\left(\frac{2\pi}{3}t\right)$$

$$V = 4 \cos\left(\frac{2\pi}{3}t\right)$$

$$V = 4 \cos\left(\frac{2\pi}{3}t\right)$$

$$V = 4 \cos\left(\frac{2\pi}{3}t\right)$$

11. (8 pts) Evaluate without using a calculator. For credit, you must sketch a right triangle. Write your answer in

(a)
$$\sin^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{1}{4}$$

an angle whose Sine is $\sqrt{2}$

D=0, to=0

(b)
$$\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{17}{6}$$

an angle whose tangent is $\frac{1}{\sqrt{3}}$

12.	(4 pts) Explain why it isn't possible to find $\sin^{-1}\left(\frac{3}{2}\right)$. Include the sketch of a right triangle in your explanation
	ci-1/3): al : Cot " analy whose sine is 3" so
	the hypotenuse is 2 and the opposite leg is 3. But the hypotenuse is always longer than the legs so
	the hypotenuse is always longer than the legs so
	this is impossible! 2/3-not possible!

13. (6 pts) The grade of a road is 7%. This means for every horizontal distance of 100 feet on the road, the vertical rise is 7 feet. Find the angle the road makes with the horizontal in both radians and degrees.

Sketch:

14. (3 pts) Rewrite the following without -x in the argument:

$$\sin(-x)\tan(-x)+\cos(-x)$$

$$-\sin(x)\cdot -\tan(x)+\cos(x)$$

$$-\sin(x)\tan(x)+\cos(x)$$

15. (6 pts)

(a) Use the fact the cosine is an even function to prove secant is an even function; i.e., show that

$$\frac{\sec(-x) = \sec(x)}{\sec(-x)} = \frac{1}{\cos(-x)}$$

$$= \frac{1}{\cos(x)}$$

$$= \sec(x)$$
Because cosine is an even function
$$= \frac{1}{\cos(x)}$$

$$= \sec(x)$$

(b) Because $y = \sec(x)$ is an even function, we know its graph will have what type of symmetry?

Symmetry with respect to $\frac{y-axis}{}$