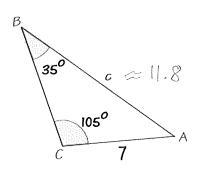
Please do your work in a well-organized manner. Credit is based on the amount of correct work shown, not just on the final answer. Use proper notation. Only scientific calculators are allowed on the exam.

Some helpful formulas are located on the last page!

The following problems refer to a triangle ABC which has angles and/or sides as given. Solve for the indicated side or angle.

1. (8 pts) Solve for side c, as shown, in the triangle.

$$Sin(105^{\circ}) = Sin(35^{\circ})$$
 $C = 7 Sin(105^{\circ}) = 11.8$
 $C = 11.8$



- 2. (12 pts) Given the triangle as shown,
 - (a) Solve for side x.

A
$$x \approx 4.8$$

Solve for side x.

$$x^{2} = 3^{2} + 5^{2} - 2(3)(5)\cos(70^{\circ})$$

$$x^{2} = 23 \cdot 739 \cdot \cdots$$

$$x \approx 4.8$$

$$x \approx 4.9$$

(b) Find the other two angles in the triangle.

$$\frac{\sin C}{5} = \frac{\sin 70^{\circ}}{4.8723}$$

 $\sin C = \frac{5 \sin (70^{\circ})}{4.8723}$

$$B = 180^{\circ} - A - C$$

$$= 180^{\circ} - 70^{\circ} - 74.9^{\circ}$$

$$B = 35.4^{\circ}$$

Mode's

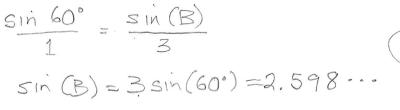
Answer

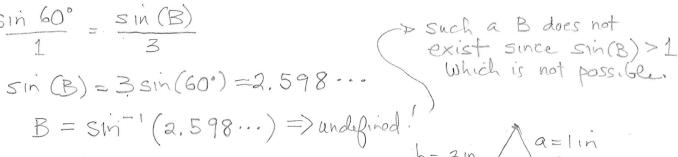
Answer

Of based

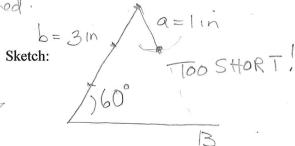
$$C = Sin^{-1}(.9643...)$$
 $C = 74.6^{\circ}$
 $C = 74.6^{\circ}$

3. (4 pts) (a) Use the Law of Sines to show that no triangle exists for which $A = 60^{\circ}$, a = 1 in, and b = 3 in.





(b) Extra Credit (2 points) Make a somewhat accurate sketch of the given sides and angle to illustrate why Triangle ABC doesn't exist.



- 4. (8 pts) A pilot is flying over a straight highway. She determines the angles of depression to two points, A and B, to be 25° and 49°, as shown in the picture. The distance between A and B is 1.6 miles.
 - (a) Find the distance from the plane to point A. Round your answer to the nearest tenth of a mile.

$$sin 25^{\circ}$$
 $sin 24^{\circ}$
 $b = 1.6 sin (25^{\circ})$
 $sin (24^{\circ})$

The distance from the plane to point A is approximately 1.7 mi

4 (b) Find the elevation of the plane (height directly above the ground).

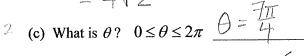
- 5. (6 pts) (a) Plot the Cartesian point (4, -4)
 - 3 (b) What is r for the polar coordinates of this point? Show work and leave in exact form.

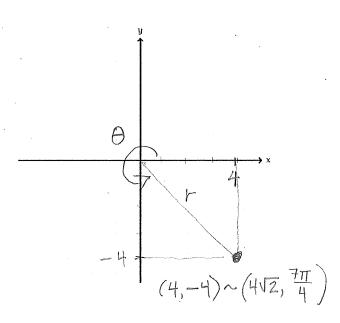
$$r = \sqrt{x^2 + y^2}$$

$$r = \sqrt{(4)^2 + (-4)^2}$$

$$= \sqrt{32}$$

$$= 4\sqrt{2}$$





6. (10 pts) (a) Plot and label (A,B,C) the polar points.

Point A:
$$\left(4, \frac{5\pi}{6}\right)$$

Point B:
$$\left(-3,\pi\right)$$

Point C:
$$\left(6, -\frac{\pi}{4}\right)$$

(b) Convert Point A $\left(4, \frac{5\pi}{6}\right)$ to Cartesian Coordinates.

Show work and leave in exact form.

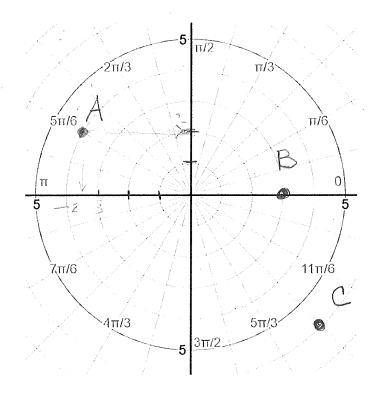
$$X = r \cos \theta$$

= $4 \cos (\frac{5\pi}{6})$
= $4(-\frac{5\pi}{2}) = -2\sqrt{3}$

$$y = r \sin \theta$$

= $4 \sin (5\pi)$
= $4(\frac{1}{2}) = 2$

$$A = (-2\sqrt{3}, 2)$$



Note: chocks out on graph!

7. (6 pts) Convert each rectangular equation to a polar equation. Solve for r in each case.

(a)
$$x^2 + y^2 = 4$$

 $r^2 = 4$

$$r = \frac{1}{\sin \theta} \left[(ok) \right]$$

$$r = \frac{1}{\cos \theta} \left[(ok) \right]$$

$$r = \frac{1}{\cos \theta} \left[(ok) \right]$$

8. (6 pts) Convert each polar equation to a rectangular equation.

(a)
$$r = 6\sin\theta$$

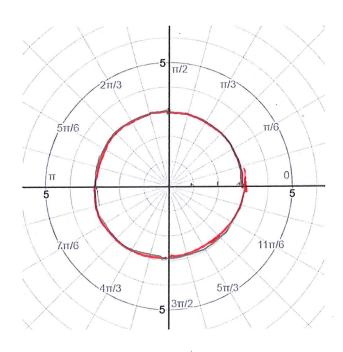
$$r = 6\frac{4}{r}$$

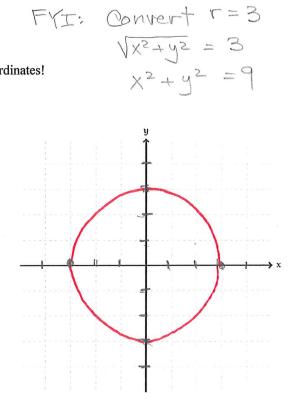
$$r^2 = 6\frac{4}{r}$$

$$x^2 + y^2 = 6\frac{4}{r}$$

(b)
$$r = \frac{4}{\cos \theta}$$
 $\cos \theta$
 $r \cdot \cos \theta = \frac{4}{\cos \theta}$ $\cos \theta$
 $x = 4$

9. (4 pts) Graph the polar equation r=3 on both coordinate grids. No work is necessary and you do not need to convert to rectangular coordinates!





For full credit, you must include a table with 8 points, using $\frac{\pi}{4}$ as your increment.

For reference:

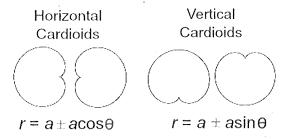
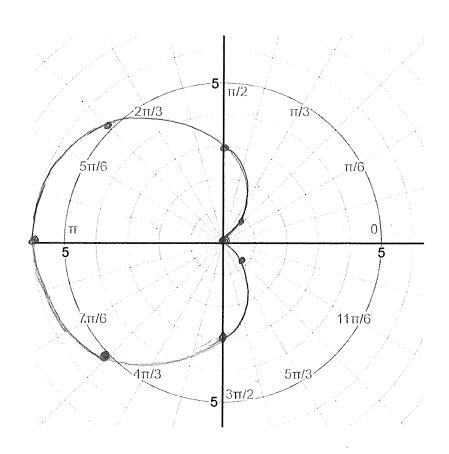


Table:

$$\frac{\Theta}{3}$$
 $\frac{\Gamma}{3}$ $\frac{3-3\cos(5\pi)=0}{4}$ $\frac{\pi}{2}$ $\frac{3-3\cos(5\pi)=3}{4}$ $\frac{3-3\cos(5\pi)=5.1}{4}$ $\frac{3-3\cos(5\pi)=6}{4}$ $\frac{3-3\cos(5\pi)=5.1}{4}$ $\frac{3-3\cos(5\pi)=5.1}{4}$ $\frac{3-3\cos(5\pi)=3}{2}$ $\frac{3-3\cos(5\pi)=3}{2}$ $\frac{3-3\cos(5\pi)=3}{2}$ $\frac{3-3\cos(5\pi)=0}{4}$



11. (12 pts) For vector
$$\vec{v} = 4\hat{i} + 3\hat{j} = \langle 4, 3 \rangle$$

$$\mathcal{J}$$
 (a) Graph \vec{v} and $2\vec{v}$

 \Im (b) Find the magnitude of \vec{v} . Show work!

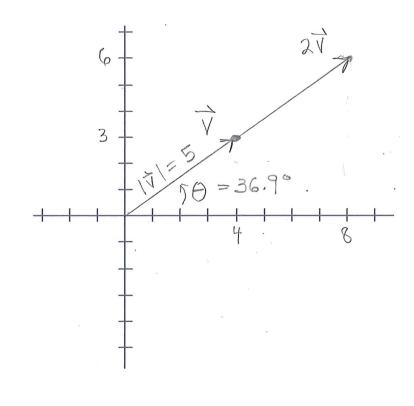
$$|\vec{V}| = \sqrt{a^2 + b^2}$$

= $\sqrt{(4)^2 + (3)^2}$
= $\sqrt{25}$
= 5 $|\vec{V}| = 5$

 \Im (c) Find the direction of \vec{v} in degrees (standard angle). Round the angle to one decimal place.

$$\tan \theta = \frac{b}{a} = \frac{3}{4}$$

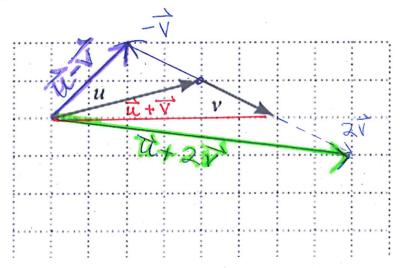
 $\theta = \tan^{-1}(\frac{3}{4})$
 $\theta \approx 36.9^{\circ}$



 $\vec{\beta}$ (d) Find a unit vector, \vec{u} , in the same direction as \vec{v} . Illustrate \vec{u} on the graph of \vec{v}

$$\vec{L} = \frac{\vec{V}}{|\vec{V}|} = \frac{1}{5} < 4.3 > \frac{1}{5} > \frac{1}{5}$$

12. (6 pts) Graph $\vec{u} + \vec{v}$, $\vec{u} - \vec{v}$, and $\vec{u} + 2\vec{v}$ on the given grid. Label each!



13. (6 pts) Use the vectors $\vec{v} = \langle 3, -2 \rangle$ and $\vec{w} = \langle 1, 5 \rangle$ to find each of the following:

(a)
$$-5\vec{v} + 6\vec{w}$$

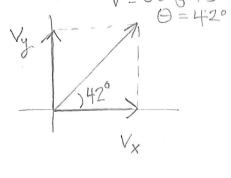
= $-5\langle 3, -2 \rangle + 6\langle 1, 5 \rangle$
= $\langle -(5, +10) + \langle 6, 30 \rangle = \langle -9, 40 \rangle$

(b)
$$\vec{v} \cdot \vec{w}$$

= $\langle 3, -27 \cdot \langle 1, 5 \rangle$
= $3 \cdot 1 + (-2)(5)$
= $3 - 10 = -7$

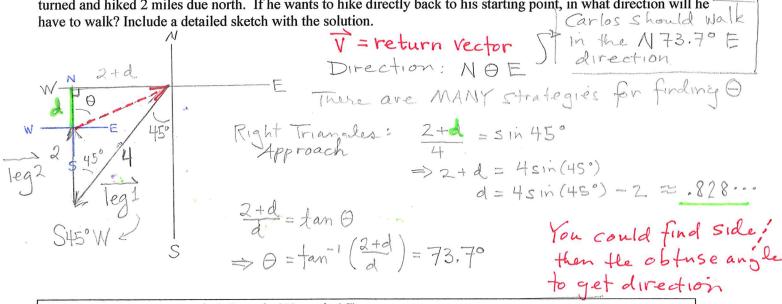
14. (4 pts) Suppose Bella throws a baseball with an initial velocity of 55 feet per second at an angle of 42°. Find V=55 ft/9 the horizontal and vertical components of the velocity vector of the ball. Round to one decimal place.

$$|V| = 55 \text{ ft/Aec.}$$
 $\theta = 42^{\circ}$
 $V_{x} = |V| \cos \theta$
 $V_{y} = |V| \sin \theta$
 $V_{x} = |V| \cos \theta$
 $V_{y} = |V| \sin \theta$
 $V_{x} = |V| \cos \theta$
 $V_{y} = |V| \sin \theta$
 $V_{y} = |V| \sin \theta$
 $V_{x} = 40.9 \text{ ft/Aec.}$
 $V_{y} = 36.8 \text{ ft/Aec.}$



Extra credit (3 pts):

Carlos is backpacking in the Sierras. From his starting point, he hiked 4 miles in the southwest direction. He then turned and hiked 2 miles due north. If he wants to hike directly back to his starting point, in what direction will he have to walk? Include a detailed sketch with the solution.



Helpful formulas:
$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c}$$

$$c^2 = a^2 + b^2 - 2ab\cos(C)$$