Math 247: Theoretical Probability: The Addition Rule and Complements (Section 5.2)
Mutually Exclusive Events: A and B are mutually exclusive if they cannot both happen.
Example: Use your knowledge of the world and a Venn diagram to determine whether the following events are mutually exclusive or not.
(a) A student being a business major; a student being in statistics.
M.E. not M.E
(b) The weather being completely sunny (no clouds); the weather being rainy

M.E. not M.E

(c) A person being a rock-climber; a person being an engineer
M.E. not M.E
(d) A person being 5 years old;
a person being a U.S. senator
M.E. not M.E

Probability Addition Rule for Mutually Exclusive Events:

$$
\begin{aligned}
& P(A \text { or } B)=P(A)+P(B) \\
& P(A \text { or } B \text { or } C)=P(A)+P(B)+P(C) \\
& P(A \text { or } B \text { or } C \text { or } D)=P(A)+P(B)+P(C)+P(D)
\end{aligned}
$$

Example: A standard deck of playing cards has 52 cards, with 4 suits (hearts, spades, diamonds, clubs), 13 "kinds" $(2,3, \ldots, 10$, jacks, queens, kings, aces), and 2 colors (black clubs and spades, red diamonds and hearts).

If you draw 1 card randomly from the deck what is the probability of each of the following:
(a) The card will be a heart

Example (continued):

(b) The card will be a face card
(c) The card will be a king
(d) The card will be queen
(e) The card will be a king or a queen
(f) The card will be a king AND a queen.

Now find the probability the card will be a queen or a heart

Did the Addition Rule work in this case? Why or why not?

General Addition Rule: $\quad P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$
Why the subtraction? $\mathrm{P}(\mathrm{A})$ and $\mathrm{P}(\mathrm{B})$ DOUBLE COUNT the outcomes which are both A and B , so the subtraction removes the double-counted outcomes.

Example: Suppose you draw 1 card from a deck of cards. Use the General Addition Rule to find the probability the card will be
(a) a jack or a red card

Example (continued):

(b) an ace or a spade
(c) a five or a nine
$P(A$ and $B)=0$ if and only if A and B are mutually exclusive.

Complements of Events

Example: If the probability of rain today is 20%, what is the probability of no rain?

Complement (Negation) of an Event: $A^{C}=$ the complement of $A=$ "not A "
Events and their complements are automatically mutually exclusive.

Probability of the Complement of an Event: $P(A)+P\left(A^{C}\right)=1$
So

Example: If the probability of getting a "lemon" (a bad new car) is .001 , what is the probability you will not get a "lemon" if you buy a new car?

Use the proper notation!

Multiple Trials:

Example: Suppose you flip a coin three times. List all the possible outcomes. Then set up a table showing the number of heads and the associated probabilities.

$\mathrm{X}=$				
$\mathrm{P}(\mathrm{X})=$				

Find the following probabilities. Use the proper notation.
Probability of getting 2 heads.

Probability of getting no heads.

Probability of getting at least one head.

Probability of "At Least One": If X is a discrete Random Variable (more on this later!), then

$$
P(X \geq 1)=1-P(X=0)
$$

