		Testing Catego	orical (Qualitative) Variables			
Type of Test	Purpose	Example	Hypotheses	Test Statistic and Formulas	Conditions* (Specific to this Test)	
Chi Square Test for Independence Sections 10.1, 10.3	Test whether there is an association between 2 categorical variables. Data may be summarized in a Two-Way Table.	Is there an association between sugar consumption and ability to focus in children?	H_O : Var 1 and Var 2 are independent. H_a : Var 1 and Var 2 are associated.	$\chi^{2} = \sum \frac{(O - E)^{2}}{E}$ Df = (rows - 1)(columns - 1) O = Observed counts E = Expected counts	Expected counts must be at least 5 in all cells	
One Proportion Z Test Section 8.1 – 8.3	Test whether the proportion of successes in a single population is different than a specific percentage. Note: Proportions are often expressed as percentages.	Is the proportion of kids with asthma in the Central Valley higher than 8.4% (the national percentage)? $H_{a}: p \neq p_{o}$ (or >, or <, depending on the wording of the problem		$z = \frac{\hat{p} - p_o}{SE}$ $SE = \sqrt{\frac{p_o(1 - p_o)}{n}}$	Expected counts in the Success and Failure groups must be at least 10: $E = np_O \ge 10$ $E = n(1 - p_O) \ge 10$	
One Proportion Confidence Interval Section 7.4		Estimate \pm Margin of Err. $\hat{p}\pmz*\sqrt{rac{\hat{p}\left(1-\hat{p} ight)}{n}}$	Z* is based on the confidence level $90\% \Rightarrow z^* = 1.645$ $95\% \Rightarrow z^* = 1.960$ $99\% \Rightarrow z^* = 2.576$	Notes: (1) For SE in the hypothesis test, you use p_O , since the entire test is based on the assumption that $p = p_O$. (2) For the confidence interval, you have to approximate the SE value by using \hat{p} .		
		Testing Numer	ical (Quantitative) Variables			
Type of Test	Purpose	Example	Hypotheses	Test Statistic and Formulas	Conditions* (Specific to this Test)	
1 Sample T-Test for Mean	Test whether the average value of some numerical variable in a single population is different than a specific value.	Is the average height of male college students greater than 6.0 feet?	$H_O: \ \mu = \mu_O$ $H_a: \ \mu \neq \mu_O$ (or >, or <, depending on the wording of the problem)	$t = \frac{\overline{x} - \mu_0}{SE}$ $SE = \frac{s}{\sqrt{n}}$ $df = n - 1$	Either the sample size has to be 25 or more (Large Sample) or , if the sample is small, then the underlying population distribution of the variable has to be normal.	
One Mean Confidence Interval Section 7.4		Estimate \pm Margin of Err. $\overline{x} \pm t * \frac{s}{\sqrt{n}}$	t* is based on the confidence level and the degrees of freedom.	Notes: If the CI captures the null, then we do not reject the null. If the CI does not capture the null, then have a significant result; i.e., we do reject the null and accept the alternative.		

		T	esting Numerical (C	Quantitative) Variables: Two	Groups			
Paired T-Test	Test whether the average of the <u>differences</u> between paired or dependent samples is zero or not.	Put them on a diet plan.		$H_O: \ \mu_D = 0$ $H_a: \ \mu_D \neq 0$ (or >, or <, depending on the wording of the	$t = \frac{\overline{D}}{SE}$ $SE = \frac{s_D}{\sqrt{n}}$ $df = n - 1$	$\frac{S_D}{\sqrt{n}}$ Either the sample s or more (Large Sam or, if the sample is s		
2 Sample T-Test For Means Section 9.5	Test whether there is a difference between the means of two groups.	Is the average speed of cyclists during rush hour greater than the average speed of drivers		$H_O: \ \mu_1 - \mu_2 = 0$ $H_a: \ \mu_1 - \mu_2 \neq 0$ (or >, or <, depending on the wording of the problem)		Independer Either each group is 25 Samples) or , if the sar the underly	or , if the samples are small, then the underlying population distributions of the variable has to	
One-Way ANOVA Chapter 11	Test whether if there is a difference between the means of more than two groups.	In a diet study where there are three groups, with each group following a different diet, are there significant differences in average weight loss between the groups?		$H_O: \ \mu_1 = \mu_2 = \mu_3$ $H_a:$ At least one mean is different from the others.	$F = \frac{MS_{between}}{MS_{within}}$	T-Test for m	Same as Conditions for 2 Sample T-Test for means Also, population variance must be equal	
	•		DF	SS	MS	F	P-value	
ANOVA Table		BETWEEN SIGNAL	M – 1	$\sum n_i (\overline{x}_i - \overline{\overline{x}})^2$	$\frac{SS_{Between}}{DF_{Between}}$	$\frac{MS_{Between}}{MS_{Within}}$	$P(F \ge Test \ F)$	
		WITHIN NOISE	N-M	$\sum (n_i - 1) \cdot s_i^2$	$rac{SS_{Within}}{DF_{Within}}$			
		Total	N – 1					
Confidence Intervals For Differences in Means (including Tukey Tests) Section 9.5, Section 11.4		Estimated Difference ± Margin of Err.		Notes: If the CI captures zero, there is not a significant difference between the groups, on average. If the CI does not capture zero, then there is a significant difference.				