Math 247: Comparing Proportions from Two Populations (Sections 7.5, 8.4)
Does banding penguins in order to study and track them actually cause harm to the penguins? Claire Saraux, a wildlife researcher, conducted an experiment to answer this question. In 1998, she tagged 200 king penguins at Possession Island in Antarctica. She fitted half the birds with steel bands, and the other half with internal electronic tags. After 10 years of monitoring, Saraux found that just 20 of banded birds had survived the decade, compared to 36 of electronically tagged ones.

What is the research question for this study?

What are the two "populations" of interest here?

What are the two samples?

What is a "success" in this context?

We could organize Claire's data in a table:
What proportion of the banded penguins survived? Use proper notation!

	Metal Band	No Metal Band
Survived (success/event)		
Didn't survive (failure)		
Total		

What proportion of the unbanded penguins survived? Use proper notation!

What is the difference between the survival proportions? Use proper notation! \qquad
What does the negative sign tell you?

Can we infer from this result that IF half of ALL penguins were banded and the other half of ALL penguins were not banded, that there would be EXACTLY a 16% difference in survival rates? Explain.

What should the difference be between survival proportions if the bands don't affect the penguins' survival?
Difference between the populations:

Difference between the samples:

Just as we found for a single proportion, if certain conditions are met, then the differences between the
SAMPLE proportions will be approximately \qquad in their distribution.

Conditions:

1. Random and Independent. Each sample is randomly drawn from its population, and observations are independent from one another.
2. Large Samples. Both sample sizes are large enough that there are at least 10 expected successes and at least 10 expected failures in each sample. For this step, we use the "Pooled Proportion" $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}}$ which gives the overall proportion of successes in both samples combined.
3. Large Populations. The population size must be at least 10 times sample size, for each sample.
4. (New condition!) Independent Samples. The samples themselves are independent from each other.

For example, if the banded birds and the unbanded birds were deliberately chosen as siblings, then the two samples would not be independent from each other!

Sampling distribution for the difference between two proportions:
Pooled Standard Error:

$$
S E=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

Unpooled Standard Error:

$$
S E=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

Now that we have a sampling distribution, we can make an inference about the difference between the population proportions based on the difference between our sample proportions. In laymen's terms, we can see if the data provides evidence that there would be a significant difference in survival rates between banded and unbanded penguins for ALL penguins (not just the penguins in the samples!).

Hypothesis Test for Two Proportions

H_{0} : The proportion of successes in each of the two populations is the same.

$$
p_{1}=p_{2} \Rightarrow p_{1}-p_{2}=0 \text { (the hypothesized difference is zero) }
$$

H_{a} : The proportion of successes of the first population is less than the proportion of the second population

$$
p_{1}<p_{2} \Rightarrow p_{1}-p_{2}<0
$$

or the first proportion is more than the second proportion

$$
p_{1}>p_{2} \quad \Rightarrow \quad p_{1}-p_{2}>0
$$

or the first proportion different from the second proportion

$$
p_{1} \neq p_{2} \Rightarrow p_{1}-p_{2} \neq 0
$$

We'll use StatCrunch to do the calculations but for reference, here are the formulas:
Test statistic: $z=\frac{\hat{p}_{1}-\hat{p}_{2}}{S E} \quad$ where $\hat{p}=\frac{x_{1}+x_{2}}{n_{1}+n_{2}} \quad$ is the "pooled proportion" and

$$
S E=\sqrt{\hat{p}(1-\hat{p})\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)} \text { is the "Pooled Standard Error" }
$$

Test whether the penguin data suggests there is a statistically significant difference in penguin survival rates based on banding. For the hypothesis test, do Step 1 by hand, do Step 2, do Step 3 by hand then using StatCrunch, and do Step 4 by writing a complete conclusion that answers the research question.

Step 1:

\qquad

Step 2: \qquad

Step 3: \qquad

Using StatCrunch: More complete instructions are at the end of Chapter 8
Stat $\rightarrow \rightarrow$ Proportion Stats \rightarrow Two Sample \rightarrow With Summary
Fill in the number of successes and the number of observations for each sample Select the "P-value plot" under "Optional Graphs and Tables"

Hypothesis test results:

Difference	Count1 Total1	Count2 Total2	Sample Diff.	Std. Err.	Z-Stat	P-value		
$\mathrm{p}_{1}-\mathrm{p}_{2}$	20	100	36	100	-0.16	0.0634	-2.51976	0.0117

Step 4: \qquad

