1. (6 pts) Suppose you wanted to take a poll to find out whether Cuesta students would support a new fee to fund a new Tutoring Center. You decide to gather a sample of 30 students for your poll
(a) If you walked around campus during the day and asked 30 students whether they support the fee, you have a sample that is (circle the answer)

Random and Representative of the Population
Not Random but Represenatative of the Population
Random but not Representative of the Population
Neither Random nor Representative of the Population
(b) If you asked a Random Sample of 30 students the question "Considering the fact that students already pay a lot of money to go to college, would you support having a new fee for a new Tutoring Center?", what type of bias would your sample have and would it be positive or negative bias?

Type of Bias: \qquad
Positive or Negative Bias (circle your answer)
2. (6 pts) Assume there are about 300 students who are Nursing majors at Cuesta.

If you wanted to obtain a Simple Random Sample (SRS) of 20 Nursing majors at Cuesta College, describe the process you would go through to get the sample.

If instead you just used 20 students in a pre-nursing class, what would this sample be called?
A Sample of \qquad
3. (3 pts) Statistical inference includes which of the following (circle the correct answer):
(a) Using a sample to prove that something is true about a population with 100% certainty
(b) Using a sample to prove that something is false about a population with 100% certainty
(c) Using a sample statistic to estimate a population parameter with a level of confidence that is always less than 100%.
(d) Using a sample to prove something about the sample.
4. (6 pts) Suppose in conducting a study, you've done everything correctly in gathering data, in doing the analysis via hypothesis testing, then in forming a conclusion based on the P -value.

There is still the possibility, due to \qquad that the evidence led you to a conclusion that is incorrect. This would be an invisible error.

If the evidence led you to reject the null hypothesis, you could have made a \qquad error.

If the evidence led you to not reject the null hypothesis, you could have made a \qquad error.
5. (6 pts) Suppose a hypothesis test was done correctly, with perfect random, independent sampling and all conditions for the test satisfied. If the P-value for the test was .25 , which of the following would be correct (circle all correct statements...there may be more than one!):
a. We would reject the null hypothesis.
b. We would accept the null hypothesis.
c. We would fail to reject the null hypothesis.
d. There is a 25% chance we would get these data values and test statistic due to sampling variability, if the null is true.
e. The result of the test is statistically significant.
f. We would know with 100% certainty that the null hypothesis is true.
6. (6 pts) A magazine article cited a poll which found that 33% of the women pet owners have dogs and 31% of the men pet owners have dogs. The margin of error was $+/-3 \%$, with a 95% level of confidence.
The magazine article had the title "Dogs Are Actually Woman's Best Friend".
Is this title correct or misleading, based on the results of the poll? I.e., can we conclude from this poll that a higher percentage of ALL women (pet owners) have dogs as compared to men pet owners?

For credit, explain your answer. Include a number line graph of both confidence intervals.
7. (5 pts) A poll on a proposition showed that the proportion of all voters supporting it is between .52 and .60 , using a 95% level of confidence.
(a) Graph the interval on a number line:
(b) What proportion of the sample supported the proposition? \qquad
(c) What is the margin of error? \qquad
8. (18 pts) An e-commerce research company claims that 32% of people who click on a particular ad eventually buy the item. Suppose a random sample of 200 people who clicked on the ad is taken and 58 of them went on to buy the item.
(a) Based on the sample, find the 95% confidence interval for the proportion of ALL ad-clickers who will go on to buy the product. z^{*} values are provided.
(StatCrunch results are given below for reference, but you MUST show work by hand for credit!)

Confidence Level	z^{*}
80%	1.282
90%	1.645
95%	1.960
99%	2.576

For reference:
95\% confidence interval results:

Proportion	Count	Total	Sample Prop.	Std. Err.	L. Limit
p	58	200	0.29	0.032085822	0.22711294

(b) Interpret the confidence interval from (a) in the context of the problem.
(c) Does the confidence interval support or not support the claim of the e-commerce research company? Briefly explain.
9. (2 pts) What is the relationship between the P -value for a one-tailed test and the P -value for a two-tailed test, assuming you are using the same hypotheses and data?
10. (2 pts) What is the "default" significance level that is most often used in hypothesis tests? \qquad
11. (2 pts)If you want to conduct a hypothesis test at the .01 significance level, what confidence level should you use if you want to include a confidence interval in your analysis?

Confidence Level $=$ \qquad
12. (2 pts) What are the 4 steps of hypothesis testing? You can use one word for each step (no explanation required).

Step 1: \qquad
Step 2: \qquad
Step 3: \qquad
Step 4: \qquad
13. (6 pts) What 3 conditions have to be checked for a z-Test for One Proportion hypothesis test or One Proportion Confidence Interval?
1.
2.
3.

We have to check conditions to make sure that the \qquad Theorem applies.

This Theorem tells us that the Sampling Distribution of \hat{p} is approximately \qquad as long as the conditions are met.
14. (12 pts) In the past, an average of 50% of employed people said they were completely or very satisfied with their jobs. Recently, the General Social Survey sampled 1016 employed people and asked them how satisfied they were with their jobs. Of the 1016 people sampled, 475 said they were completely satisfied or very satisfied with their jobs.
(a) If you were to test to see whether the proportion of completely or very satisfied workers has decreased from the previous proportion of 50%, what would the hypotheses be? Write in math symbols and in words.
H_{0} :
$H_{a}:$
\#14: continued..
(b) Choose the graph below that correctly represents the P-value for the test. (No calculations necessary!)

(c) The P-value is .0192 . What is the conclusion to the hypothesis test?
(d) If the alternative hypothesis was testing for whether happiness with work had changed instead of decreased, what would the P -value be?

P -value $=$ \qquad
(e) What (invisible) error could we make with this conclusion? (Circle your answer)

Type I (False Positive)
Type II (False Negative)
No error, we know that the sample proportion tells us exactly what the population proportion is.
15. (16 pts) In 2012, the Ventura County Star (newspaper) reported that 63% of employers allow employees to work from home sometimes. Suppose a random sample of 400 employers shows that 235 allow some work from home. Test the hypothesis that the percentage of all employers who allow some work from home is not 63%. Use a significance level of .05 .

Step 1: (Write hypotheses with math symbols and in words.)

Step 2:

Step 3: Find the Test statistic, z, by hand. Your work must include a sketch the sampling distribution of \hat{p}, with the null hypothesis, sample proportion, and $\underline{\mathrm{P} \text {-value clearly illustrated and labeled. Put the } \mathrm{z} \text {-axis under the }}$ \hat{p} axis, and mark where the Test Statistic is.

For reference:
Hypothesis test results:

Proportion	Count	Total	Sample Prop.	Std. Err.	Z-Stat	P-value
p	235	400	0.5875	0.024140215	-1.7605477	0.0783

Step 4:

