Math 265B: Euler's Method

Goal: Estimate the solution to the IVP $y^{\prime}(x)=x-y-2, \quad y(0)=1$ at $y(2)$
Make a "Polygonal Approximation" of the solution curve

Euler's Method:

We want to estimate $y\left(x_{\text {final }}\right)$ given the IVP $y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}$

Process:

1. Locate a point (start at the IC, $\left(x_{0}, y_{0}\right)$).
2. Find the slope of the solution curve at that point, using $y^{\prime}=\frac{d y}{d x}=$ slope
3. Find $\Delta y: \Delta y=m \cdot \Delta x$
4. Project forward to a new point, using the fact that $x_{k+1}=x_{k}+\Delta x$ and $y_{k+1}=y_{k}+\Delta y$
5. Continue this process until you reach the target x -value.

- Each iteration of this process is called a "step".
- The Δx value is called the "step-size". (The variable h is more commonly used for step-size.)
- The number of steps needed is given by $\frac{x_{\text {final }}-x_{\text {initial }}}{\Delta x}$

Step	Point		$\mathrm{m}=$ Slope	Change in y	Project to New Point	
k	x_{k}	y_{k}	$y^{\prime}(x)=f\left(x_{k}, y_{k}\right)$	$\Delta y=m \cdot \Delta x$	$x_{k+1}=x_{k}+\Delta x$	$y_{k+1}=y_{k}+\Delta y$

Example: Use Euler's method, by hand, to estimate the solution to the IVP $y^{\prime}=x-y-2, y(0)=1$ at $y(2)$ using the following step sizes: , and $\Delta x=.5$ Illustrate the polygonal approximation on the slope field.
$\Delta x=1$

Step	Point		Slope	Change in y	Project to New Point	
k	x_{k}	y_{k}	$y^{\prime}=x-y-2$	$\Delta y=m \cdot \Delta x$	$x_{k}+\Delta x$	$y_{k}+\Delta y$

$$
\Delta x=.5
$$

Step	Point		Slope	Change in y	Project to New Point	
k	x_{k}	y_{k}	$y^{\prime}(x)$	$\Delta y=m \cdot \Delta x$	$x_{k}+\Delta x$	$y_{k}+\Delta y$

Now use the GeoGebra program to confirm your answers above and to continue the process $\Delta x=.1 \Delta x=.05$

Error Analysis

Put all of your estimations in the table below.
Then determine the actual value of $\mathrm{y}(2)$ using the fact that the analytical solution to the IVP is $y=x+4 e^{-x}-3$.* *Note: Wolfram will solve the IVP for you. Use the command "Solve" followed by the IVP

Finally, determine the error. Remember: Error $=$ Estimate - Actual

Δx	Euler's Estimate $y(2)$	Actual value of $y(2)$	Error

If the step size is reduced by a factor of 10 , what effect does this appear to have on the error?

How efficient is this process?

