Flowchart for choosing a Convergence Test for an infinite series, $\sum_{k=1}^{\infty} a_{k}$

Step 1: Look at the terms in the series; i.e., expand a few or just look at the form of a_{k}.
Vital question: If the terms are all positive, will these terms get small FAST as k gets large?
What does "dominance" say about this? Is the numerator or denominator growing faster?
Note: If the terms are alternating, then you'll be looking at the Alternating Series Test, then judging absolute vs. conditional convergence.

Step 2: Make an educated guess about whether the series converges or diverges.
Step 3: PROVE your guess by applying the appropriate test.
Be sure to check all conditions BEFORE applying the test.

Start Here:		Test to Apply	Result	Conclusion
Do the terms go to zero in the limit? $\lim _{k \rightarrow \infty} a_{k}=0 \text { ? }$	NO	Divergence Test	$\lim _{k \rightarrow \infty} a_{k} \neq 0$	Series diverges
YES				
Is the series Geometric?$\begin{gathered} \sum_{k=0}^{\infty} a \cdot r^{k} \\ r=\frac{a_{k+1}}{a_{k}}=\text { CONSTANT } \end{gathered}$	YES	Geometric Series Test	$\|r\|<1$	Series converges to $\frac{a}{1-r}$
			$\|r\| \geq 1$	Series diverges
NO				
Is the series of the form			$p>1$	Series converges
$\sum_{k=1} \overline{k^{p}}$			$p \leq 1$	Series diverges
NO				
Is the series a rational expression made of two polynomials?	YES	Direct Comparison or	Series is OVER a divergent series	Series diverges
			Series is UNDER a convergent series	Series converges
EX: $\sum_{k=1}^{\infty} \frac{k^{2}+1}{k^{3}+4 k+2}$		Limit Comparison In both cases, compare to a	$\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}}=L$	Both series either converge or diverge...their terms' behavior is the same in the long run.
Compare to $\sum_{k=1}^{\infty} \overline{k^{3}}=\sum_{k=1} \bar{k}$		p-Series determined using "dominance"	$\lim _{k \rightarrow \infty} \frac{a_{k}}{b_{k}} d n e$	Test is inconclusive
$\begin{gathered} \text { NO } \\ \text { (next page) } \end{gathered}$				

Does the series have a factorial?$\text { EX: } \sum_{k=1}^{\infty} \frac{k!}{2^{k}}$	YES	Ratio Test	$\lim _{k \rightarrow \infty}\left\|\frac{a_{k+1}}{a_{k}}\right\|=L$	$\mathrm{L}<1$, series converges
				$\mathrm{L}>1$, series diverges
				$\mathrm{L}=1$, test is inconclusive
Alternating Series have some further considerations				
Do the terms of $\sum_{k=1}^{\infty} a_{k}$ alternate in sign? EX: $\sum_{k=1}^{\infty} \frac{(-1)^{k} k^{2}}{3^{k}}$	YES	First test for Absolute Convergence: $\sum^{\infty}\|a .\|$	$\sum_{k=1}^{\infty}\left\|a_{k}\right\|$ converges,	Series converges "absolutely"
		converge or diverge? Apply one of the tests above.	$\sum_{k=1}^{\infty}\left\|a_{k}\right\|$ diverges,	Check "conditional" convergence using Alternating Series Test
		Alternating Series Test $\lim _{k \rightarrow \infty}\left\|a_{k}\right\|=0 ?$	YES	Series converges "conditionally"
		Note: You've already analyzed this in the first step (Divergence Test!)	NO	Series diverges

