Flowchart for choosing a Convergence Test for an infinite series, $\sum_{k=1}^{\infty} a_k$

Step 1: Look at the terms in the series; i.e., expand a few or just look at the form of a_k .

Vital question: **If the terms are all positive**, will these terms get small FAST as k gets large? What does "dominance" say about this? Is the numerator or denominator growing faster?

Note: If the terms are alternating, then you'll be looking at the Alternating Series Test, then judging absolute vs. conditional convergence.

Step 2: Make an educated guess about whether the series converges or diverges.

Step 3: PROVE your guess by applying the appropriate test. Be sure to check all conditions BEFORE applying the test.

Start Here:		Test to Apply	Result	Conclusion
Do the terms go to zero in the limit? $\lim_{k \to \infty} a_k = 0?$	NO	Divergence Test	$\lim_{k\to\infty}a_k\neq 0$	Series diverges
YES				
Is the series Geometric? $\sum_{k=0}^{\infty} a \cdot r^{k}$	YES	YES Geometric Series Test	<i>r</i> < 1	Series converges to $\frac{a}{1-r}$
$r = \frac{a_{k+1}}{a_k} = CONSTANT$	125		$ r \ge 1$	Series diverges
NO				
Is the series of the form $\sum_{n=1}^{\infty} 1$	YES	p-Series Test	<i>p</i> > 1	Series converges
$\sum_{k=1}^{\infty} \frac{1}{k^p}$			<i>p</i> ≤ 1	Series diverges
NO				
Is the series a rational expression made of two polynomials?	YES	Direct Comparison or	Series is OVER a divergent series	Series diverges
			Series is UNDER a convergent series	Series converges
EX: $\sum_{k=1}^{\infty} \frac{k^2 + 1}{k^3 + 4k + 2}$ $\sum_{k=1}^{\infty} \frac{k^2}{k^2} = \sum_{k=1}^{\infty} \frac{1}{k^2}$		Limit Comparison In both cases, compare to a p-Series determined using "dominance"	$\lim_{k\to\infty}\frac{a_k}{b_k}=L$	Both series either converge or divergetheir terms' behavior is the same in the long run.
Compare to $\sum_{k=1}^{\infty} \overline{k^3} = \sum_{k=1}^{\infty} \overline{k}$			$\lim_{k\to\infty}\frac{a_k}{b_k} \ dne$	Test is inconclusive
NO (next page)				

