Math 265B: Chapter 9 [Chapter 10] Convergence Test Theorems

Theorem (The Divergence Test):
If
$$\lim_{k \to \infty} a_k \neq 0$$
, then $\sum a_k$ diverges. (This is the case where the terms aren't getting small as the series grows.)
Theorem (The Geometric Series Test):
The geometric series $\sum_{k=0}^{\infty} a \cdot r^k$ converges to $\frac{a}{1-r}$ if and only if $|r| < 1$,
Theorem (The Integral Test):
If $f(x)$ is a continuous, positive, decreasing function, defined for $x \ge c$, where c is some real number, and if
 $f(k) = a_k$ for all $k \ge c$, then the improper integral $\int_c^{\infty} f(x) dx$ and the series $\sum_{k=1}^{\infty} a_k$ either both converge or both
diverge. Note: To use this test, you must check that the conditions on f are satisfied; i.e., verify that $f(x)$ is
continuous, positive, and decreasing.
Theorem (The p-Series Test):
The series $\sum_{k=1}^{\infty} \frac{1}{k^p}$ is convergent for $p > 1$, and divergent for $p \le 1$.
Theorem (Diret Comparison Test): (Section 9.5) Suppose $0 \le a_k \le b_k$ for all $n \ge N$.
(i) If $\sum_{k=1}^{\infty} b_k$ is convergent, then $\sum_{k=1}^{\infty} a_k$ is also convergent.
(ii) If $\sum_{k=1}^{\infty} a_k$ is divergent, then $\sum_{k=1}^{\infty} b_k$ is also divergent.
Theorem (Limit Comparison Test): Suppose $a_k, b_k > 0$ for all $k \ge N$. If $\lim_{k \to \infty} \frac{a_k}{b_k} = L$ for some finite, positive
number L , then either both series $\sum a_k$, $\sum b_k$ converge or both diverge.
Theorem (The Ratio Test): (Section 9.5) Suppose $a_k \ne 0$ for all k , and $\lim_{k \to \infty} \left| \frac{a_{k+1}}{a_k} \right| = L$.
If $L < 1$, then the series $\sum a_k$ converges.
If $L > 1$, then the series $\sum a_k$ converges.
If $L > 1$, then the series $\sum a_k$ converges.
If $L > 1$, then test is inconclusive.

Theorem (Alternating Series Test): (Section 9.6) If $0 < a_{k+1} \le a_k$ for all k, and $\lim_{k \to \infty} a_k = 0$, then the alternating series $\sum_{k=0}^{\infty} (-1)^k a_k$ converges.