Math 265B: Deriving the Integral Formula for Arclength (Section 6.5)
Question: How long is the curve $y=f(x)$ from $x=a$ to $x=b$?
Approach: Slice, dice, and sum up the pieces!

1. On the x -axis: Label the location of the endpoints of the curve $y=f(x)$ with $\mathrm{x}=\mathrm{a}$ and $\mathrm{x}=$ b , then partition the interval $[\mathrm{a}, \mathrm{b}]$ into 5 or 6 subintervals.

On the curve: Use the points on the curve (created by the partition) to make a "polygonal approximation" to the curve.
2. Select one of the middle subintervals. We'll treat this as the $\mathrm{k}^{\text {th }}$ subinterval. Label the left endpoint on the x-axis as x_{k}.

On the piece of the curve in your $\mathrm{k}^{\text {th }}$ subinterval, draw a secant line, then draw a right triangle and label the parts as $\Delta x, \Delta y_{k}, L_{k}$,
 where $L_{k}=$ hypotenuse .
3. Relate $\Delta x, \Delta y_{k}, L_{k}$ with an appropriate equation.
4. The crux: Write a linear approximation for
Δy_{k} and substitute this into your equation above.
(Use the derivative to make the linear
 approximation!)
5. Solve for L_{k}

6. Construct a Riemann sum for the total length of the curve (approximate) using L_{k} from above. Be sure to factor out Δx

7. Conclusion : Use the Riemann sum to set up the integral that gives the exact length of the curve from a to b .

The length of the curve $y=f(x)$ on [a,b]

