Math 265B: Improper Integrals (Section 7.8)

Consider the definite integrals $\int_{0}^{\infty} \frac{0.5 x}{x^{2}+1} d x$ and $\int_{0}^{\infty} \frac{1}{x^{2}+1} d x$.

1. Sketch two separate graphs to illustrate what each integral represents.
2. Since we cannot integrate to infinity, we will consider integrals on the interval $[0, b]$ and observe what happens as we let b increase. Use Wolfram Alpha or another program to evaluate the integrals.

\boldsymbol{b}	$\int_{0}^{b} \frac{0.5 x}{x^{2}+1} d x$	$\int_{0}^{b} \frac{1}{x^{2}+1} d x$
10		
20		
50		
100		
250		

What do these results suggest about the two areas?
3. What is improper about the definite integral $\int_{1}^{3} \frac{1}{(x-2)^{2}} d x$?

Sketch a graph showing the area represented by the integral. Is this region closed?
4. Pretend that you were unaware of the "improperness" of the integral in Question 3 and evaluate it like normal. Why is your answer clearly incorrect? (Consider the graph)
5. Let's consider integrals on the interval $[1, b]$ and observe what happens as we let b get close to 2 .

\boldsymbol{b}	$\int_{1}^{b} \frac{1}{(x-2)^{2}} d x$
1.5	
1.9	
1.99	
1.999	

What do these results suggest about the area?

