Math 265B: Integration by Parts, LIATE, and Column Method
Integration by Parts Formula: $\int u \cdot d v=u \cdot v-\int v \cdot d u$
The expressions $u$ and $d v$ are chosen with two criteria in mind:
(1) $v$ should be easy to find from $d v$; (2) the integral $\int v \cdot d u$ should, in some sense, be "better" or easier than $\int u \cdot d v$

The difficulty usually arises in choosing $u$ and $d v$ to satisfy these conditions. An acronym gives us a method of selection which helps to satisfy criterion (2) above. The word is LIATE, standing for which function should be chosen as $u$. Logarithmic Inverse-Trig Algebraic Trig Exponential.

Integrate each of the following, using Integration by Parts Formula, with LIATE as your guide for choosing $u$
$\int x e^{x} d x$
$\int \sin ^{-1}(x) d x$
$\int x^{4} \ln (x) d x$

Round Robin:
$\int e^{x} \sin (x) d x$

## Column Method:

If $u$ can be differentiated down to zero and dv can easily be integrated repeatedly, then using the Column Method is the quickest way to go!

EXAMPLE 1 Evaluate $\int x^{3} e^{x} d x$ by tabular integration.
Solution With $u=x^{3}$ and $d v=e^{x}$, we list


We add the products of the functions connected by the arrow, with every other sign changed, to obtain

$$
\int x^{3} e^{x} d x=x^{3} e^{x}-3 x^{2} e^{x}+6 x e^{x}-6 e^{x}+C
$$

EXAMPLE 2 Evaluate $\int x^{3} \sin x d x$ by tabular integration.
Solution With $u=x^{3}$ and $v^{\prime}=\sin x$, we list


We add the products of the functions connected by the arrow, with every other sign changed, to obtain

$$
\int x^{3} \sin x d x=-x^{3} \cos x+3 x^{2} \sin x+6 x \cos x-6 \sin x+C
$$

