Math 265B: Integration by Parts, LIATE, and Column Method

Integration by Parts Formula: $\int u \cdot dv = u \cdot v - \int v \cdot du$

The expressions u and dv are chosen with two criteria in mind: (1) v should be easy to find from dv; (2) the integral $\int v \cdot du$ should, in some sense, be "better" or easier than $\int u \cdot dv$

The difficulty usually arises in choosing u and dv to satisfy these conditions. An acronym gives us a method of selectionwhich helps to satisfy criterion (2) above. The word is LIATE, standing for which function should be chosen as u.LogarithmicInverse-TrigAlgebraicTrigExponential.

Integrate each of the following, using Integration by Parts Formula, with LIATE as your guide for choosing u

 $\int xe^x dx$

 $\int \sin^{-1}(x) dx$

 $\int x^4 \ln(x) dx$

Round Robin:

 $\int e^x \sin(x) dx$

Column Method:

If u can be differentiated down to zero and dv can easily be integrated repeatedly, then using the Column Method is the quickest way to go!

EXAMPLE 1 Evaluate $\int x^3 e^x dx$ by tabular integration. Solution With $u = x^3$ and $dv = e^x$, we list

We add the products of the functions connected by the arrow, with every other sign changed, to obtain

$$\int x^3 e^x \, dx = x^3 e^x - 3x^2 e^x + 6x e^x - 6e^x + C$$

EXAMPLE 2 Evaluate $\int x^3 \sin x \, dx$ by tabular integration. Solution With $u = x^3$ and $v' = \sin x$, we list

We add the products of the functions connected by the arrow, with every other sign changed, to obtain

$$\int x^3 \sin x \, dx = -x^3 \cos x + 3x^2 \sin x + 6x \cos x - 6 \sin x + C$$