
Math 265B:  Techniques of Integration...when the integrand is a fraction 
 
Note:  This is not a sequential or algorithmic approach.  In dealing with more advanced integration, you have to have a 
pretty high tolerance for frustration and the willingness to try something to see where it leads, even if it might lead to a 
dead end. 
_______________________________________________________________________________________________ 
Look first for a u-substitution (you’re looking for u and du).  Even if there isn’t a u-sub at first, keep looking for one as 
you continue with the other strategies described below! 
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_______________________________________________________________________________________________ 
Look for integrands which have the form of inverse trig function derivatives.  
You may uncover this pattern after doing u-substitution! 
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_______________________________________________________________________________________________ 
Manipulate the integrand algebraically.  Some methods that can help: 
 

• Try breaking up the fraction (split up the numerator).   
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• Try applying trig identities or try writing all functions in terms of sine and cosine 
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• Try multiplying the fraction by a form of one to massage the integrand into an integrable form. 
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• If the integrand is a rational function with the degree of numerator ≥ degree of denominator, 
 then perform long division. 
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