Math 265B: Techniques of Integration...when the integrand is a fraction

Note: This is not a sequential or algorithmic approach. In dealing with more advanced integration, you have to have a pretty high tolerance for frustration and the willingness to try something to see where it leads, even if it might lead to a dead end.

Look first for a u-substitution (you're looking for u and du). Even if there isn't a u-sub at first, keep looking for one as you continue with the other strategies described below!

Forms: $\int \frac{1}{u} d u=\ln |u|+C$
or $\int \frac{1}{u^{p}} d u=\int u^{-p} d u=\frac{1}{-p+1} u^{-p+1}+C$, where $p \neq 1$

Look for integrands which have the form of inverse trig function derivatives.
You may uncover this pattern after doing u-substitution!

$$
\int \frac{1}{1+u^{2}} d u=\tan ^{-1}(u)+C \quad \int \frac{1}{\sqrt{1-u^{2}}} d u=\sin ^{-1}(u)+C \quad \int \frac{1}{u \sqrt{u^{2}-1}} d u=\sec ^{-1}(u)+C
$$

Manipulate the integrand algebraically. Some methods that can help:

- Try breaking up the fraction (split up the numerator).

Example: $\int \frac{x+5}{\sqrt{1-x^{2}}} d x$

- Try applying trig identities or try writing all functions in terms of sine and cosine

Example: $\int \frac{\sin ^{2}(x)}{\sqrt{1-\cos (2 x)}} d x$

- Try multiplying the fraction by a form of one to massage the integrand into an integrable form.

Example: $\int \frac{e^{-2 x}}{e^{-x}+e^{-3 x}} d x$

- If the integrand is a rational function with the degree of numerator \geq degree of denominator, then perform long division.

Example: $\int \frac{x^{2}}{x+1} d x$

