Math 265B: Integration Review (Chapter 5)

Anti-derivatives/Indefinite Integral Formulas

Power rule:
 $\int u^{p} d u=\frac{1}{p+1} u^{p+1}+C$

Natural Log:
$\int \frac{1}{u} d u=\ln |u|+C$

Exponential Functions:

$\int e^{u} d u=e^{u}+C$
$\int a^{u} d u=\frac{1}{\ln (a)} a^{u}+C$

Substitution (Reversing the Chain Rule:

$\int f(u(x)) \cdot u^{\prime}(x) d x=F(u(x))+C$
where F is an antiderivative of f.

Method: First try Guess and Check! Compensate with a multiplied constant, if necessary, to make sure that $\frac{d}{d x}[F(u(x))]$ matches the integrand.

Second, if you can't guess correctly, look for an "inner function" (this will be " u ") and the derivative of that function (this will be "du"). Compensate with any needed constant to make du precise.

Trig Functions:

$\int \cos (\mathbf{u}) d u=\sin (\mathbf{u})+C$
$\int \sin (\mathrm{u}) d u=-\cos (\mathrm{u})+C$
$\int \sec ^{2}(\mathbf{u}) d u=\tan (\mathbf{u})+C$
$\int \sec (\mathrm{u}) \tan (\mathrm{u}) d u=\sec (\mathrm{u})+C$

Inverse Trig Functions:

$$
\int \frac{1}{u^{2}+1} d u=\arctan (\mathrm{u})+C
$$

$$
\int \frac{1}{\sqrt{1-u^{2}}} d u=\arcsin (\mathrm{u})+C
$$

$$
\int \frac{1}{u \sqrt{u^{2}-1}} d u=\operatorname{arcsec}(\mathrm{u})+C
$$

Riemann Sums: (Note: we'll be revisiting these in Chapter 7. For now, we'll just review the Right Sum)
Right Sum: $\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$,
where $\mathrm{n}=$ the number of subdivisions of the interval $[\mathrm{a}, \mathrm{b}]$
and $\Delta x=\frac{b-a}{n}$

Definite Integrals: Suppose f is continuous on the interval [a,b] . We define the Definite Integral of f on the interval $[a, b]$ to be

$$
\int_{a}^{b} f(x) d x=\lim _{\Delta x \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x
$$

or more commonly, $\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$

Fundamental Theorem of Calculus: If f is continuous on the interval $[\mathrm{a}, \mathrm{b}]$
$\int_{a}^{b} f(x) d x=\left.F(x)\right|_{x=a} ^{x=b}=F(b)-F(a)$, where F is any antiderivative of f, i.e., $F^{\prime}(x)=f(x)$

Using symmetry to evaluate integrals:

$$
\begin{gathered}
\int_{-a}^{a} f(x) d x=2 \int_{0}^{a} f(x) d x \quad \text { if } f \text { is an even function, i.e. symmetric with respect to the } \mathrm{y} \text {-axis. } \\
\text { Test for even function: } f(-x)=f(x)
\end{gathered}
$$

$$
\int_{-a}^{a} f(x) d x=0 \quad \text { if } f \text { is an odd function; i.e. symmetric with respect to the origin. }
$$

Test for odd function: $f(-x)=-f(x)$

Properties of Integrals:

1. $\int_{a}^{a} f(x) d x=0$
2. $\int_{b}^{a} f(x) d x=-\int_{a}^{b} f(x) d x$
3. $\int_{a}^{b} f(x)+g(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x$
4. $\int_{a}^{b} c f(x) d x=c \int_{a}^{b} f(x) d x$
5. $\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x$

Average value of a function over an interval [a,b]: $\quad f_{\text {avg }}=\frac{1}{b-a} \int_{a}^{b} f(x) d x$

