Math 265B: Summary of Parametric Equations

Parameterization: A "parameterization" of a path in 2-space is a set of equations where x and y are functions of t. The variable " t " is called the "parameter". It is the independent variable while x and y are both dependent (on t).

Any parameterization must also include a domain for t.
The parameterization of a path is generally not unique; i.e., there are many parameterizations that will all describe the same path.

General advice: After setting up a parameterization, ALWAYS check that it "works", i.e., that it begins at the correct point and goes in the correct direction to get to the next point.

To graph a parameterization, you can use a table:

Given $\quad x=x(t), \quad y=y(t), \quad t_{0} \leq t \leq t_{1}$
Set up and fill in a table, like this:

t		x	y

To reverse direction: In general: Substitute $-t$ for t in the parametric equations and simplify.

Circles and Ellipses:

Unit Circle

No parameter: $x^{2}+y^{2}=1$ (Boring and static...)
Parametric form: $x=\cos (t), \quad y=\sin (t), \quad 0 \leq t \leq 2 \pi \quad$ (Dynamic!)
Includes direction of travel and period, which relates to speed)
Direction: counter-clockwise (ccw) ("Direction" is also called "Orientation")
Period: $T=2 \pi$
If direction of motion is clockwise: $x=\cos (t), \quad y=-\sin (t), \quad 0 \leq t \leq 2 \pi$

Circles in General: Center (h, k), Radius a

No parameter: $(x-h)^{2}+(y-k)^{2}=a^{2}$
Parametric form: $x=h+a \cos (b t), \quad y=k+a \sin (b t), \quad 0 \leq t \leq \frac{2 \pi}{b}$
(ccw-orientation)
Period: $T=\frac{2 \pi}{b}$

Ellipses:

No parameter: $\frac{(x-h)^{2}}{A^{2}}+\frac{(y-k)^{2}}{B^{2}}=1$
Parametric form: $x=h+A \cos (t), \quad y=k+B \sin (t), \quad 0 \leq t \leq 2 \pi$
(ccw-orientation)
Period: $T=2 \pi$

Lines: Constant velocity lines

Parametric form (ENTIRE LINE): $x=x_{0}+a t, \quad y=y_{0}+b t, \quad-\infty<t<\infty$

Parametric form (LINE SEGMENT): $x=x_{0}+a t, \quad y=y_{0}+b t, \quad t_{0} \leq t \leq t_{1}$
Slope of this line: $m=\frac{b}{a}$

To find the parameterization of a line or line segment:

If the line passes through a point $\left(x_{0}, y_{0}\right)$ and has slope $m=\frac{\Delta y}{\Delta x}$,
a parametric form of the ENTIRE LINE is $\quad x=x_{0}+\Delta x \cdot t, \quad y=y_{0}+\Delta y \cdot t, \quad-\infty<t<\infty$

If you just want the parameterization of the line segment $\overline{P Q}$ that goes from point $P=\left(x_{0}, y_{0}\right)$ to point $Q=\left(x_{1}, y_{1}\right)$ in one time increment, then do the following.

$$
\text { Find } \Delta x=x_{1}-x_{0}, \quad \Delta y=y_{1}-y_{0}
$$

Parameterization is $x=x_{0}+\Delta x \cdot t, \quad y=y_{0}+\Delta y \cdot t, \quad 0 \leq t \leq 1$

Parametric Equations and Motion:

Velocity: $v_{x}=\frac{d x}{d t}$ is the velocity in the x-direction,

$$
v_{y}=\frac{d y}{d t} \text { is the velocity in the } \mathrm{y} \text {-direction }
$$

Speed: $\quad s=\sqrt{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}}$ is the speed.

Acceleration: $\quad a_{x}=\frac{d^{2} x}{d t^{2}}$ is the acceleration in the x -direction

$$
a_{y}=\frac{d^{2} y}{d t^{2}} \text { is the acceleration in the } \mathrm{y} \text {-direction }
$$

