Math 265B: Summary of Parametric Equations

Parameterization: A "parameterization" of a path in 2-space is a set of equations where x and y are functions of t. The variable "t" is called the "parameter". It is the independent variable while x and y are both dependent (on t).

Any parameterization must also include a domain for t.

The parameterization of a path is generally not unique; i.e., there are many parameterizations that will all describe the same path.

General advice: After setting up a parameterization, ALWAYS check that it "works", i.e., that it begins at the correct point and goes in the correct direction to get to the next point.

To graph a parameterization, you can use a table:

Given x = x(t), y = y(t), $t_0 \le t \le t_1$ Set up and fill in a table, like this:

t	х	у

To reverse direction: In general: Substitute -t for t in the parametric equations and simplify.

Circles and Ellipses:

Unit Circle

No parameter: $x^2 + y^2 = 1$ (Boring and static...)

 $0 \le t \le 2\pi$ Parametric form: $x = \cos(t)$, $y = \sin(t)$, (Dynamic!) Includes direction of travel and period, which relates to speed) Direction: counter-clockwise (ccw) ("Direction" is also called "Orientation") **Period**: $T = 2\pi$

If direction of motion is clockwise: $x = \cos(t)$, $y = -\sin(t)$, $0 \le t \le 2\pi$

Circles in General: Center (h,k), Radius *a*

No parameter: $(x-h)^2 + (y-k)^2 = a^2$

Parametric form: $x = h + a\cos(bt)$, $y = k + a\sin(bt)$, $0 \le t \le \frac{2\pi}{h}$ (ccw-orientation)

Period:
$$T = \frac{2\pi}{h}$$

Ellipses:

No parameter:
$$\frac{(x-h)^2}{A^2} + \frac{(y-k)^2}{B^2} = 1$$

Parametric form: $x = h + A\cos(t)$, $y = k + B\sin(t)$, $0 \le t \le 2\pi$ (ccw-orientation)

Period: $T = 2\pi$

Lines: Constant velocity lines

Parametric form (<u>ENTIRE LINE</u>): $x = x_0 + at$, $y = y_0 + bt$, $-\infty < t < \infty$

Parametric form (<u>LINE SEGMENT</u>): $x = x_0 + at$, $y = y_0 + bt$, $t_0 \le t \le t_1$

Slope of this line:
$$m = \frac{b}{a}$$

To find the parameterization of a line or line segment:

If the line passes through a point (x_0, y_0) and has slope $m = \frac{\Delta y}{\Delta x}$, a parametric form of the ENTIRE LINE is $x = x_0 + \Delta x \cdot t$, $y = y_0 + \Delta y \cdot t$, $-\infty < t < \infty$

If you just want the parameterization of the line segment \overline{PQ} that goes from point $P = (x_0, y_0)$ to point $Q = (x_1, y_1)$ in one time increment, then do the following.

Find $\Delta x = x_1 - x_0$, $\Delta y = y_1 - y_0$

Parameterization is $x = x_0 + \Delta x \cdot t$, $y = y_0 + \Delta y \cdot t$, $0 \le t \le 1$

Parametric Equations and Motion:

Velocity: $v_x = \frac{dx}{dt}$ is the velocity in the x-direction,

$$v_y = \frac{dy}{dt}$$
 is the velocity in the y-direction

Speed:
$$s = \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2}$$
 is the speed.

Acceleration:
$$a_x = \frac{d^2x}{dt^2}$$
 is the acceleration in the x-direction

$$a_y = \frac{d^2 y}{dt^2}$$
 is the acceleration in the y-direction