Math 265B: Graphs of Common Polar Equations Summary

Lines in Polar Coordinates:

Vertical Lines

Rectangular: x = a

Polar: $r = a \sec(\theta)$

Horizontal Lines

Rectangular: y = b

Polar: $r = a \csc(\theta)$

Lines through the Origin:

Rectangular: y = mx

Polar: $\theta = \theta_O$, $m = \tan(\theta_O)$

Circles in Polar Coordinates:

Circle Centered at the origin:

Rose Curves:

a is the "height" (or length) of each petal.

$$r = a\cos(n\theta)$$

One petal is symmetric to x-axis, if n is even then symmetric to both axes.

$$r = a \sin(n\theta)$$

May be symmetric to y-axis.

If *n* is odd, there will be **n petals. Some examples:

$$r = 2\cos(3\theta)$$

If n is even, there will be 2n petals.

$$r = 3\sin(4\theta)$$

To determine shape:

If |a| = |b|, creates a heart-shaped **cardiod**. These have a "cusp".

If |a| < |b|, creates an **inner loop**:

If |a| > |b|, creates **no** cusp **nor** inner loop. It looks like a slightly squashed circle.

Spirals:

 $r = k\theta$ (spirals out)

Example: $r = \theta$

 $r = \frac{k}{\theta}$ (spirals in)

Example: $r = \frac{1}{\theta}$