Lines in Polar Coordinates:

Vertical Lines			
Rectangular: $x=a$			
Polar: $r=a \sec (\theta)$	Horizontal Lines		
Rectangular: $y=b$		\quad	Lines through the Origin:
:---			
Rectangular: $y=m x$			
Polar: $r=a \csc (\theta)$	\(\quad \theta=\theta_{o}, m=\tan \left(\theta_{o}\right) . ~\left(\begin{array}{l}Polar: 		

\hline\end{array}\right.\)

Circles in Polar Coordinates:

Rose Curves:
\boldsymbol{a} is the "height" (or length) of each petal.
$r=a \cos (n \theta)$
One petal is symmetric to x -axis, if n is even then symmetric to both axes.

$$
r=a \sin (n \theta)
$$

May be symmetric to y -axis.

If n is even, there will be $\mathbf{2 n}$ petals.

$$
r=3 \sin (4 \theta)
$$

Limacons: $\quad r=a+b \cos \theta \quad r=a+b \sin \theta$

To determine shape:

If $|a|=|b|$, creates a heart-shaped cardiod. These have a "cusp".

If $|a|<|b|$, creates an inner loop:

If $|a|>|b|$, creates no cusp nor inner loop. It looks like a slightly squashed circle.

Spirals:

$$
r=k \theta \quad \text { (spirals out })
$$

Example: $r=\theta$
$r=\frac{k}{\theta} \quad($ spirals in $)$

Example: $r=\frac{1}{\theta}$

