
Math 265B:  Convergence of Power Series (Chapter 10) 
 
1. Convergence Theorem for Power Series 
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(i) the series converges only for x = a (and becomes just c0)    or 
 

(ii) the series converges for all values of x   or 
 

(iii) there is a positive number R > 0 such that the series converges for all x for which |x – a| < R  

 and diverges for all x for which |x – a| > R.   
 

 R is called the “radius of convergence”.   
 
 The interval of convergence must contain the interval    a – R  <  x  <  a + R.   
 

To completely identify the interval of convergence, it needs to be determined whether the series converges at the 
endpoints of the interval. 

 

 NOTE:  Every power series converges for x = a.  Some series converge only for x = a.  Some series converge for  
 x = a and for all other reals, and some series converge for x =a and on an interval around a. 
 
 

  

1.   Determine the interval of convergence for the following series “by inspection”:   
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2. We can use the Ratio Test is used to determine the radius and interval of convergence of power series. 
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  Then i) if L < 1, the series 
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 ii) If L > 1 or if 1n
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+ →∞ , the series diverges. 

iii) If L = 1, the test is inconclusive. 
iv)  

 Determine the radius of convergence and interval of convergence for  
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3.   We can construct new series from known series and find the interval of convergence at the same time: 
 
Find power series for the functions below by using old series.  Include the interval of convergence for each. 
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Derivatives and Integrals of Power Series: 

If 2 3
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i) the derivative of f converges on the interior of I 
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ii) the integral of f converges on the interior of I 
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