Math 265B: Convergence of Power Series (Chapter 10)

1. Convergence Theorem for Power Series
a) Let $c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$ be any power series. Then
(i) the series converges only for $X=a$ (and becomes just C_{0}) or
(ii) the series converges for all values of x or
(iii) there is a positive number $\mathrm{R}>0$ such that the series converges for all x for which $|x-a|<R$ and diverges for all x for which $|x-a|>R$.
R is called the "radius of convergence".
The interval of convergence must contain the interval $a-R<x<a+R$.
To completely identify the interval of convergence, it needs to be determined whether the series converges at the endpoints of the interval.
NOTE: Every power series converges for $\mathrm{x}=\mathrm{a}$. Some series converge only for $\mathrm{x}=\mathrm{a}$. Some series converge for $x=a$ and for all other reals, and some series converge for $x=a$ and on an interval around a.
2. Determine the interval of convergence for the following series "by inspection":

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots+\frac{x^{n}}{n!}+\ldots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
f(x)=1+x+x^{2}+x^{3}+\ldots=\sum_{n=0}^{\infty} x^{n}
$$

$$
f(x)=\sum_{k=0}^{\infty}(4 x)^{k}
$$

2. We can use the Ratio Test is used to determine the radius and interval of convergence of power series.

Given the series $\sum_{n=1}^{\infty} a_{n}, a_{n} \neq 0$ and $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=L$ or $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty$ as $n \rightarrow \infty$.
Then i) if $L<1$, the series $\sum_{n=1}^{\infty} a_{n}$ converges absolutely.
ii) If $L>1$ or if $\left|\frac{a_{n+1}}{a_{n}}\right| \rightarrow \infty$, the series diverges.
iii) If $L=1$, the test is inconclusive.
iv)

Determine the radius of convergence and interval of convergence for

$$
\sum_{k=0}^{\infty} \frac{x^{k}}{4 k}
$$

$$
\sum_{k=1}^{\infty} \frac{2^{k}}{k}(x-3)^{k}
$$

3. We can construct new series from known series and find the interval of convergence at the same time: Find power series for the functions below by using old series. Include the interval of convergence for each.
i) $\frac{1}{2 x+1}$
ii) $\frac{x}{2 x+1}$
iii) $\frac{1}{x+2}$
iv) $e^{x^{2}}$

Derivatives and Integrals of Power Series:
If $f(x)=c_{0}+c_{1}(x-a)+c_{2}(x-a)^{2}+c_{3}(x-a)^{3}+\ldots=\sum_{n=0}^{\infty} c_{n}(x-a)^{n}$ has an interval of convergence I , then
i) the derivative of f converges on the interior of I

$$
f^{\prime}(x)=c_{1}+2 c_{2}(x-a)+3 c_{3}(x-a)^{2}+3 c_{4}(x-a)^{2}+\ldots=\sum_{n=1}^{\infty} n \cdot c_{n}(x-a)^{n-1}
$$

ii) the integral of f converges on the interior of I

$$
\int f(x) d x=C+c_{0}(x-a)+c_{1} \frac{(x-a)^{2}}{2}+c_{2} \frac{(x-a)^{3}}{3}+\ldots=C+\sum_{n=0}^{\infty} c_{n} \frac{(x-a)^{n+1}}{n+1}
$$

