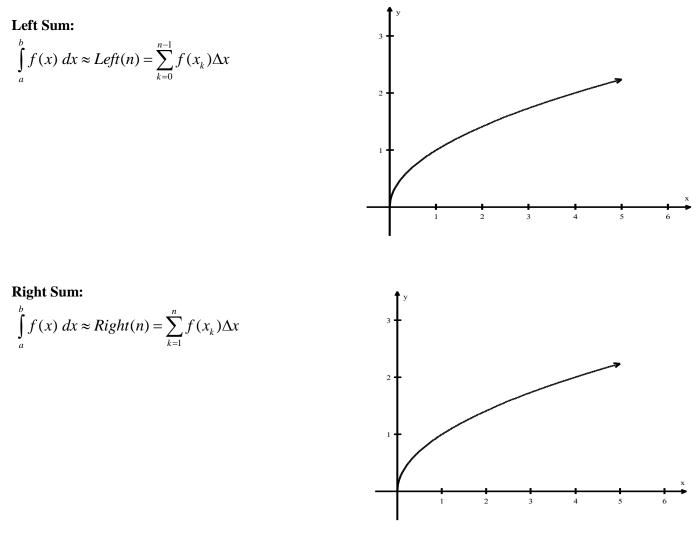
Math 265B: Numerical Methods of Integration (Section 7.7)

Using the Left Sum and Right Sum Rules, find an approximation for $\int_{1}^{4} \sqrt{x} dx$ and the error

Use n = 1, 3 by hand (illustrate these), then n = 6, 60, 600 using Wolfram Alpha.



	Error = Estimated value – True value				
n	Left(n)	Right(n)	E(n) (Left)	E(n) (Right)	
1					
3					
6					
60					
600					

Error = Estimated value – True Value

How does the error change as the number of subdivisions increases?

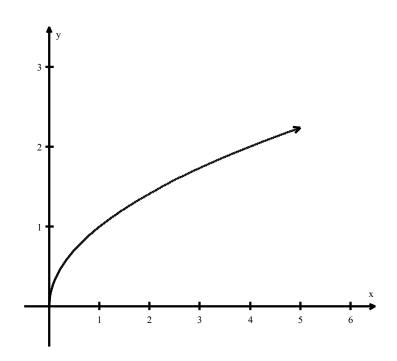
Based on the error, what could you do with the Left and Right Sums to create a new rule and thus reduce the error significantly?

Trapezoid Rule:

$$\int_{a}^{b} f(x) dx \approx Trap(n) = \left[\frac{1}{2}f(x_0) + \sum_{k=1}^{n-1} f(x_k) + \frac{1}{2}f(x_0)\right] \Delta x \qquad \text{Alternately,} \quad Trap(n) = \frac{Left(n) + Right(n)}{2}$$

Find the approximation for $\int_{1}^{4} \sqrt{x} \, dx$ Use the Trapezoid Formula (not the averaging technique).

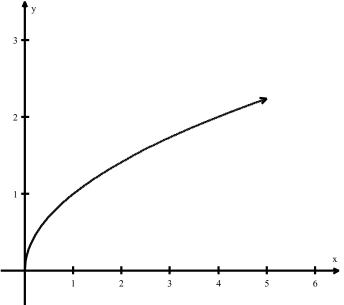
Use n = 1, n = 3 by hand (illustrate these), then n = 6, 60, 600 using Wolfram Alpha. Fill in the table on the next page.



Midpoint Rule:

$$\int_{a}^{b} f(x) dx \approx Mid(n) = \sum_{k=1}^{n} f\left(\frac{x_{k-1} + x_{k}}{2}\right) \Delta x.$$

Find the approximation for $\int_{1}^{4} \sqrt{x} \, dx$ Use n = 1, n = 3 by hand (illustrate these), then n = 6, 60, 600 using Wolfram Alpha. Fill in the table on the next page.



n	Trap(n)	Mid(n)	E(n) (Trap)	E(n) (Mid)
1				
3				
6				
60				
600				

How does the error change as the number of subdivisions increases?

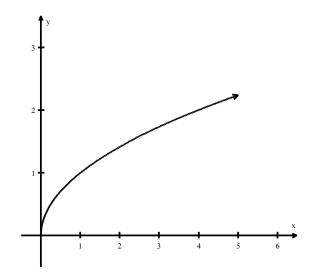
Based on the error, what could you do with the Trapezoid and Midpoint Sums to create a new rule and thus reduce the error significantly?

Simpson's Rule: <u>n must be an even integer</u> to apply Simpson's Rule.

$$\int_{a}^{b} f(x) dx \approx Simp(n) = \left[f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 4f(x_{n-1}) + f(x_n) \right] \frac{\Delta x}{3}$$

Alternately, $Simp(n) = \frac{2Mid(n) + Trap(n)}{3}$ or $S(2n) = \frac{4T(2n) - T(n)}{3}$ (book's method - meh)

Find the approximation for $\int_{1}^{4} \sqrt{x} \, dx$ Use n = 2, 6, (illustrate), then n = 60, 600 using Wolfram Alpha.



n	Simp(n)	E(n)
2		
6		
60		
600		

How does the error change as the number of subdivisions increases?