Math 265B: Numerical Methods of Integration (Section 7.7)

Using the Left Sum and Right Sum Rules, find an approximation for $\int_{1}^{4} \sqrt{x} d x$ and the error
Use $\mathrm{n}=1,3$ by hand (illustrate these), then $\mathrm{n}=6,60,600$ using Wolfram Alpha.

Left Sum:

$\int_{a}^{b} f(x) d x \approx \operatorname{Left}(n)=\sum_{k=0}^{n-1} f\left(x_{k}\right) \Delta x$

Right Sum:

$\int_{a}^{b} f(x) d x \approx \operatorname{Right}(n)=\sum_{k=1}^{n} f\left(x_{k}\right) \Delta x$

Error $=$ Estimated value - True Value

\mathbf{n}	Left(n)	Right(n)	E(n) (Left)	E(n) (Right)
1				
3				
6				
60				
600				

How does the error change as the number of subdivisions increases?

Based on the error, what could you do with the Left and Right Sums to create a new rule and thus reduce the error significantly?

Trapezoid Rule:

$\int_{a}^{b} f(x) d x \approx \operatorname{Trap}(n)=\left[\frac{1}{2} f\left(x_{0}\right)+\sum_{k=1}^{n-1} f\left(x_{k}\right)+\frac{1}{2} f\left(x_{0}\right)\right] \Delta x \quad$ Alternately, $\quad \operatorname{Trap}(n)=\frac{\operatorname{Left}(n)+\operatorname{Right}(n)}{2}$

Find the approximation for $\int_{1}^{4} \sqrt{x} d x$ Use the Trapezoid Formula (not the averaging technique).
Use $\mathrm{n}=1, \mathrm{n}=3$ by hand (illustrate these), then $\mathrm{n}=6,60,600$ using Wolfram Alpha.
Fill in the table on the next page.

Midpoint Rule:

$\int_{a}^{b} f(x) d x \approx \operatorname{Mid}(n)=\sum_{k=1}^{n} f\left(\frac{x_{k-1}+x_{k}}{2}\right) \Delta x$.

Find the approximation for $\int_{1}^{4} \sqrt{x} d x \quad$ Use $\mathrm{n}=1, \mathrm{n}=3$ by hand (illustrate these), then $\mathrm{n}=6,60,600$ using Wolfram Alpha. Fill in the table on the next page.

\mathbf{n}	Trap(n)	$\operatorname{Mid}(\mathbf{n})$	E(n) (Trap)	E(n)(Mid)
1				
3				
6				
60				
600				

How does the error change as the number of subdivisions increases?

Based on the error, what could you do with the Trapezoid and Midpoint Sums to create a new rule and thus reduce the error significantly?

Simpson's Rule: n must be an even integer to apply Simpson's Rule.
$\int_{a}^{b} f(x) d x \approx \operatorname{Simp}(n)=\left[f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right] \frac{\Delta x}{3}$
Alternately, $\quad \operatorname{Simp}(n)=\frac{2 \operatorname{Mid}(n)+\operatorname{Trap}(n)}{3} \quad$ or $\quad S(2 n)=\frac{4 T(2 n)-T(n)}{3}$ (book's method - meh)

Find the approximation for $\int_{1}^{4} \sqrt{x} d x \quad$ Use $\mathrm{n}=2,6$, (illustrate), then $\mathrm{n}=60,600$ using Wolfram Alpha.

\mathbf{n}	$\operatorname{Simp}(\mathbf{n})$	E(n)
2		
6		
60		
600		

How does the error change as the number of subdivisions increases?

