1. Use derivatives to find the Taylor polynomials of degree n approximating the given functions for x near 0 .
(a) $\frac{1}{1+x}, \mathrm{n}=6$
(b) $\sqrt{1+x}, \mathrm{n}=4$
(c) $\sqrt[3]{1-x}, \mathrm{n}=4$
(d) $\arctan \mathrm{x}, \mathrm{n}=5$ (Use the Quotient Rule)
(e) $\ln (1+x), n=7$
(f) $\frac{1}{\sqrt{1+x}}, \mathrm{n}=4$
2. Use derivatives to find the Taylor polynomial of degree n for x near the given point a .
(a) $\sin x, \mathrm{a}=\pi / 2, \mathrm{n}=6$
(b) $\cos x, \mathrm{a}=\pi / 4, \mathrm{n}=5$
(c) $\mathrm{e}^{x}, \mathrm{a}=1, \mathrm{n}=5$
3. For the following problems, suppose $P_{2}(x)=a+b x+c x^{2}$ is the second degree Taylor polynomial for the function f about $\mathrm{x}=0$. What can you say about the signs of $\mathrm{a}, \mathrm{b}, \mathrm{c}$ if f has the graph given below? (Show your understanding of the derivation of the Taylor polynomial as you justify your answers. That is, how are a, b, and c related to f and its derivatives?)
(a)

(b)

(c)

(d)

4. Suppose the function $f(x)$ is approximated near $\mathrm{x}=0$ by a sixth degree Taylor polynomial $P_{6}(x)=3 x-4 x^{3}+5 x^{6}$. Give the value of each of the following and justify each answer.
(a) $f(0)$
(b) $f^{\prime}(0)$
(c) $f^{\prime \prime \prime}(0)$
(d) $f^{(5)}(0)$
(e) $f^{(6)}(0)$
5. Suppose g is a function which has continuous derivatives, and that $g(5)=3, g^{\prime}(5)=-2, g^{\prime \prime}(5)=1, g^{\prime \prime \prime}(5)=-3$. What is the Taylor polynomial of degree 3 for g near 5?
6. Find the third-degree Taylor polynomial for $f(x)=x^{3}+7 x^{2}-5 x+1$ about $\mathrm{x}=0$. What do you notice? Make a conjecture about Taylor approximations in the case when f is itself a polynomial.
7. (a) Find the Taylor polynomial approximation of degree 4 about $\mathrm{x}=0$ for the function $f(x)=e^{x^{2}}$.
(b) Compare this result to the Taylor polynomial approximation of degree 2 for the function $f(x)=e^{x}$ about $\mathrm{x}=0$. What do you notice?
(c) Use your observation in part (b) to write out the Taylor polynomial approximation of degree 20 for the function in part (a). Note: You do not need to write out all the intermediate terms. Write out enough to show the pattern and then use the ellipsis and show the $20^{\text {th }}$ term.
(d) What is the Taylor polynomial approximation of degree 5 for the function $f(x)=e^{-2 x}$?
8. Use the Taylor polynomial in 1.(b) to approximate $\sqrt{1.25}$ and $\sqrt{0.81}$. Compare the approximations with the values that your calculator gives you.
9.

(a) $P_{6}(x)=1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}$
(b) $P_{4}(x)=1+\frac{1}{2} x-\frac{1}{8} x^{2}+\frac{1}{16} x^{3}-\frac{5}{128} x^{4}$
(c) $P_{4}(x)=1-\frac{1}{3} x-\frac{1}{9} x^{2}-\frac{5}{81} x^{3}-\frac{10}{243} x^{4}$
(d) $P_{5}(x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}$
(e) $P_{7}(x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{x^{5}}{5}-\frac{x^{6}}{6}-\frac{x^{7}}{7}$
(f) $\quad P_{4}(x)=1-\frac{1}{2} x+\frac{3}{8} x^{2}-\frac{5}{16} x^{3}+\frac{35}{128} x^{4}$

$$
P_{6}(x)=1-\frac{(x-\pi / 2)^{2}}{2!}+\frac{(x-\pi / 2)^{4}}{4!}-\frac{(x-\pi / 2)^{6}}{6!}
$$

(a)
2.

$$
=1-\frac{(2 x-\pi)^{2}}{8}+\frac{(2 x-\pi)^{4}}{384}-\frac{(2 x-\pi)^{6}}{46080}
$$

(b)

$$
P_{5}(x)=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}(x-\pi / 4)}{2}-\frac{\sqrt{2}(x-\pi / 4)^{2}}{4}+\frac{\sqrt{2}(x-\pi / 4)^{3}}{12}+\frac{\sqrt{2}(x-\pi / 4)^{4}}{48}-\frac{\sqrt{2}(x-\pi / 4)^{5}}{240}
$$

$$
=\frac{\sqrt{2}}{2}-\frac{\sqrt{2}(4 x-\pi)}{8}-\frac{\sqrt{2}(4 x-\pi)^{2}}{64}+\frac{\sqrt{2}(4 x-\pi)^{3}}{768}+\frac{\sqrt{2}(x-\pi / 4)^{4}}{12288}-\frac{\sqrt{2}(x-\pi / 4)^{5}}{245760}
$$

(c) $P_{5}(x)=e+e(x-1)+\frac{e}{2}(x-1)^{2}+\frac{e}{6}(x-1)^{3}+\frac{e}{24}(x-1)^{4}+\frac{e}{120}(x-1)^{5}$
3. For these problems, use the fact that $a=f(0), b=f^{\prime}(0)$ and $c=f^{\prime \prime}(0) / 2!$. In your justification you need to address whether $f(x)$ increasing or decreasing, being concave up or concave down and how that affects signs. Be complete in your explanations.
(a) a >0, b >0, c <0
(b) a >0, b <0, c <0
(c) a<0, b>0, c>0
(d) a<0, b<0, c >0
4.
(a) 0
(b) 3
(c) -24
(d) 0
(e) 3600
5. $\quad P_{3}(x)=3-2(x-5)+\frac{1}{2}(x-5)^{2}-\frac{1}{2}(x-5)^{3}$
6. $\quad P_{3}(x)=1-5 x+7 x^{2}+x^{3}=f(x)$ exactly. If $\mathrm{f}(\mathrm{x})$ is an n-degree polynomial, its Taylor polynomial of the same degree will match it exactly.
7. $\begin{array}{lll}\text { (a) } P_{4}(x)=1+x^{2}+\frac{x^{4}}{2} & \text { (b) } \quad P_{2}(x)=1+x+\frac{x^{2}}{2} \quad \text { You can find the fourth degree Taylor polynomial for } e^{x^{2}}\end{array}$ by substituting x^{2} for x in the second degree Taylor polynomial for e^{x}.
(c) $P_{20}(x)=1+x^{2}+\frac{x^{4}}{2!}+\frac{x^{6}}{3!}+\frac{x^{8}}{4!}+\frac{x^{10}}{5!}+\cdots+\frac{x^{20}}{10!}$
(d) Substitute $(-2 x)$ for x in the fifth degree Taylor polynomial for e^{x}.

$$
\begin{aligned}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\frac{x^{5}}{5!} \quad \begin{aligned}
e^{-2 x} & =1+(-2 x)+\frac{(-2 x)^{2}}{2!}+\frac{(-2 x)^{3}}{3!}+\frac{(-2 x)^{4}}{4!}+\frac{(-2 x)^{5}}{5!} \\
& =1-2 x+2 x^{2}-\frac{4 x^{3}}{3}+\frac{2 x^{4}}{3}-\frac{4 x^{5}}{15}
\end{aligned}
\end{aligned}
$$

8. For $\sqrt{1.25}$, let $\mathrm{x}=0.25$. Ans: 1.118011475. Calculator: 1.118033989

For $\sqrt{0.81}$, let $x=-0.19$ Ans: 0.9000079059 Calculator: 0.9

