\qquad
For maximum credit, please show all of your work in a clear, logical manner. Simplify all answers as much as possible. Leave answers in exact form unless an approximation is asked for in the instructions.

1. (3 pts) True or false:
(a) Euler's Method gives the exact solution to an initial value problem. TRUE FALSE
(b) The parameterization of a curve is always unique;
i.e., there is only one set of parametric equations for any curve.

TRUE
FALSE
(c) The polar coordinates $(2,0)$ and $(-2, \pi)$ describe the same point.

TRUE
FALSE
2. (6 pts) CHECK (don't attempt to solve!) to see whether $y=t+\frac{1}{t}$ is a solution to the differential equation $t y^{\prime}+y=2 t$. Be sure to state your conclusion (the function is or is not a solution to the DE). Show work that justifies your answer.
3. (4 pts) Which of the following differential equations are separable? (Circle those that are.)
(i) $y^{\prime}=t^{2} y^{2}$
(ii) $y^{\prime}=3 t+y$
(iii) $y^{\prime}=(y-1)(y+3)$
(iv) $y^{\prime}=\sin (t y)$
4. (8 pts) Find the general solution (in explicit form) for each differential equation. Carefully show all steps when simplifying your answer.
(a) $y^{\prime}=\frac{3+t^{2}}{\sqrt{y}}$
(b) $y^{\prime}+5 y=10$
5. (8 pts) Solve the Initial Value Problem.

$$
\frac{d y}{d t}=e^{-y} \sin (t), \quad y\left(\frac{\pi}{2}\right)=0
$$

6. $(8 \mathrm{pts})$ Consider the Initial Value Problem $\frac{d y}{d x}=(y-3)(y-6), \quad y(0)=y_{0}$.
(a) Sketch the slope field for the differential equation.
(b) Find any equilibrium (constant) solutions and classify each as stable or unstable.

(c) Sketch solution curves for the Initial Conditions $y(0)=1$ and $y(0)=7$
(d) For what initial conditions (i.e., what values of y_{0}) will the solution curves be decreasing functions?
7. (8 pts) Label each slope field with the differential equation that best matches it. No work is required to be shown.
(i) $y^{\prime}(t)=\frac{t}{2+y}$
(ii) $\quad y^{\prime}(t)=\cos (t+y)$
(iii) $y^{\prime}(t)=1+y^{2}$
(iv) $y^{\prime}(t)=t y$

(a)		(b)	
(c)		(d)	

8. (10 pts) Consider the I.V.P. $y^{\prime}=t-\frac{1}{y} \quad y(0)=2$
(a) Use Euler's Method, with $\Delta t=1$ to estimate the value of $y(2)$. Clearly show all of your work.
\qquad
(b) On the slope field provided, sketch the polygonal Euler's solution "curve", based on your work from part (a).

9. (4 pts) A cup of coffee cools at a rate proportional to the difference between the coffee's temperature, H , and the ambient temperature, A.

Set up a differential equation that models this relationship. Do not solve the D.E.
10. (12 pts) Consider the curve described by the parameterization $\left\{\begin{array}{l}x=3-t^{2} \\ y=1-t\end{array} \quad 0 \leq t \leq 3\right.$
(a) Graph the curve. Include the orientation and label the t-values for each point in your graph.
(b) Find the parametric form of the tangent line equation at the point where $t=1$. Sketch the line on your graph from part (a).
(c) Eliminate the parameter and express the curve as an xy-equation.
11. (12 pts) Find a parameterization of each of the following curves. Be sure to include the domain!
(a) The segment of the parabola $y=x^{2}+3$ where $-1 \leq x \leq 3$
(b) The line segment that begins at point $\mathrm{P}(4,-5)$ and ends and point $\mathrm{Q}(1,-1)$
(c) A circle of radius 3, oriented clockwise, with center $(3,2)$ and period of 10 seconds.
(d) The top half of the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{9}=1$, oriented counter clockwise, starting at point $(2,0)$
12. (6 pts) (a) Plot the point with polar coordinates $\left(4, \frac{\pi}{3}\right)$
(b) Find two other sets of polar coordinates that locate that same point. One set must have a negative r-value.
(c) Convert the point into rectangular coordinates. For full credit, express your answer in EXACT terms.
13. (6 pts) Convert each of the xy-equations into a polar equation.
(a) $x^{2}+y^{2}=7$
(b) $y=-6$
(c) $y=x$ (express your final answer in terms of θ only).
14.(4 pts) Graph the region $\left\{(r, \theta) \mid 2 \leq r \leq 3,-\frac{\pi}{6} \leq \theta \leq \frac{\pi}{6}\right\}$

